Basic **Design Values**

This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2016 AISC Specification (ANSI/AISC 360-16) may be less constrained and less conservative.

W-, S-, C- and MC Shapes Connected Parts

W-Shapes	ASTM A992	$F_y = 50$ ksi	$F_u = 65$ ksi
S-, C- and MC-Shapes	ASTM A36	$F_y = 36$ ksi	$F_u = 58$ ksi

BoltsGroup B (ASTM F3125 Grades A490 and F2280) $F_u =$ Group C (ASTM F3043 and F3111) $F_u =$	
Doits Group B (ASTIM F3125 Grades A490 and F2280) $F_u =$	= 2
	= 1
Group A (ASTM F3125 Grades A325 and F1852) $F_u =$	- 1

Condition			ASD	LRFD	Related Info		
Tension			$0.6F_yA_g \le 0.5F_uA_e$	$0.6F_yA_g \le 0.5F_uA_e \qquad \qquad 0.9F_yA_g \le 0.75F_uA_e$			
		$L_b \leq L_p$	0.66 <i>F_yS_x</i>	0.99 <i>F_yS_x</i>	, 300 <i>r</i> _y		
Bending	Strong Axis	$L_p < L_b \leq L_r$	Use linear interpolation	$- L_{p} = \frac{300r_{y}}{\sqrt{F_{y}}}$			
Dending		$L_b = L_r$	0.42 <i>F</i> _y S _x	$0.63F_yS_x$	See Note 1.1. L_r and strength when $L_b > L_r$ are given in		
	Wea	k Axis	0.9 <i>F_yS_y</i>	$1.35F_yS_y$	the AISC <i>Manual</i> .		
Shear (in strong axis)			$0.4F_yA_w$	$0.6F_yA_w$	See Note 1.2.		
	$L_c/r \leq c$	$800/\sqrt{F_y}$	$0.6F_y A_g (0.658)^p$	$0.9F_yA_g(0.658)^p$	$P = \frac{F_{y}(L_{c}/r)^{2}}{286,000}$ See Note 1.3.		
Compression	$L_c/r > c$	$800/\sqrt{F_y}$	$\frac{150,000A_{g}}{\left(L_{c}/r\right)^{2}}$	$\frac{226,000A_{g}}{\left(L_{c}/r\right)^{2}}$			

Notes

- 1.1 Multiply equations given for strong axis with $L_b \leq L_p$, or weak axis, by values in parentheses for W21×48 (0.99), W14×90 (0.97), W12×65 (0.98), W10×12 (0.99), W8×10 (0.99), W6×15 (0.95) and W6×8.5 (0.98).
- 1.2 Multiply equations given by 0.9 for W44×230, W40×149, W36×135, W33×118, W30×90, W24×55, W16×26 and W12×14 and all C- and MCshapes. In weak axis, equations can be adapted by using $A_{w} = 1.8b_{f}t_{f}$.
- 1.3 Not applicable to slender shapes. For slender shapes, use A_e from AISC Specification Section E7 in place of A_a . For C- and MC- shapes, see AISC Specification Section E4.

Con	dition		ASD	LRFD	Related Info				
	Tension		$0.38F_uA_b$	$0.56F_uA_b$	_				
s	Shear (N	bolts, per shear plane)	$0.23F_uA_b$	$0.34F_uA_b$	Multiply by 1.25 for X bolts.				
Bolts	Slip Resis	stance (Class A, STD holes) $0.12F_uA_b$	0.18 <i>F</i> _u A _b	Per slip plane. See Note 2.1.				
	Bearing		$1.2d_b tF_u$	$1.8d_b tF_u$	See Note 2.2.				
Ē	Tearout		0.6/ _c tF _u	$0.9I_c tF_u$	See Note 2.2.				
	Shear (all	welds except CJP)	$0.3F_{EXX}A_{we} \leq 0.3F_uA_{BM}$	$0.45F_{EXX}A_{we} \leq 0.45F_uA_{BM}$	See Note 2.3.				
g	PJP Tension Groove Compression Welds (joint not finished to bear)		$0.32F_{EXX}A_w \le 0.5F_uA_{BM}$	$0.48F_{EXX}A_w \le 0.75F_uA_{BM}$	See AISC Specification				
-			$0.48F_{EXX}A_w \leq 0.6F_yA_{BM}$	$0.72F_{EXX}A_w \leq 0.9F_yA_{BM}$	- See AISC Specification Section J2.1a.				
	CJP Groo	ove Welds	Strength equal	Strength equal to base metal.					
Parts	Tension		$0.6F_yA_g \le 0.5F_uA_e$	For A _e , see AISC Specification Equation D3-1.					
			$0.4F_yA_g \le 0.3F_uA_n$	$0.6F_yA_g \le 0.45F_uA_n$	_				
šč	Block Shear		$0.3F_uA_{nv} + 0.5U_{bs}F_uA_{nt}$	$0.45F_uA_{nv} + 0.75U_{bs}F_uA_{nt}$	See Note 2.4.				
Connected	$L_c/r \le 25$		0.6 <i>F</i> _y A	0.9 <i>F_yA</i>					
Compression $L_c/r > 25$			Same as for W-sh	Same as for W-shapes with $A_g = A$.					

Notes

- direction (0.85), and LSL holes (0.70). Multiply by 0.85 if multiple fillers are used within grip.
- 2.2 For LSL holes perpendicular to load direction, multiply by 0.83.

120 ksi 150 ksi 200 ksi

Basic Design Values

This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2016 AISC Specification (ANSI/AISC 360-16) may be less constrained and less conservative.

2.1 For Class B multiply by 1.67. Multiply by values in parentheses for SSL perpendicular to load direction (1.0), OVS or SSL parallel to load

2.3 For fillet welds, multiply by 1.5 for transverse loading (90-degree load angle). For other load angles, see AISC Specification Section J2. 2.4 For calculation purposes, $F_u A_{nv}$ cannot exceed $F_v A_{av}$. $U_{bs} = 1.0$ for a uniform tension stress; 0.5 for non-uniform tension stress.

Basic Design Values

This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2016 AISC Specification (ANSI/AISC 360-16) may be less constrained and less conservative.

HSS Members

 $F_{v} = 50 \text{ ksi}$

Rectangular

 $F_{\mu} = 65 \text{ ksi}$

_

 $F_{v} = 50 \text{ ksi}$ | $F_{u} = 62 \text{ ksi}$

Analysis and	Desigr
--------------	--------

Simplified Method (see Note 4.1)

- Step 1. Perform first-order elastic analysis. Use 0.002 times the total story gravity load as lateral load in gravity-only combinations.
- Step 2. Establish the design story drift limit and determine the lateral load that produces that drift.

Step 3. Determine the ratio of the total story gravity load to the lateral load determined in Step 2. For ASD, multiply by 1.6.

Step 4. Multiply first-order results by the tabular value. K = 1, except for moment frames when the tabular value is greater than 1.1.

Design Story	Load Ratio from Step 3 (times 1.6 for ASD, 1.0 for LRFD)														
Drift Limit	0	5	10	20	30	40	50	60	80	100	120				
H/100	1	1.1	1.1	1.3	1.5 /1.4 When ratio exceeds 1.5, simplified method										
H/200	1	1	1.1	1.1	1.2	1.3	1.3 1.4 /1.3 1.5 /1.4 requires a stiffe								
H/300	1	1	1	1.1	1.1	1.2	1.2	1.3	1.5 /1.4	-	structure.				
H/400	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.4 /1.3	1.5				
H/500	1	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.4				
Notes Where tv	vo values a	are providec	, the value i	n bold is th	le value asso	ciated with	$R_M = 0.85.$								

Interpolation between values in the table may produce an incorrect result.

Elastic Methods	Effective Length	Forces and Moments	Limitations	References
First-Order Analysis Method – second-order effects captured from effects of additional lateral load	K = 1 for all frames (see Note 4.2)	From analysis	$\Delta_{2nd}/\Delta_{1st} \le 1.5;$ axial load limited	Specification Appendix 7.3
Effective Length Method —second-order analysis with 0.2% of total gravity load as lateral load in gravity-only combinations (see Note 4.3)	K = 1, except for moment frames with $\Delta_{2nd}/\Delta_{1st} > 1.1$	From analysis (see Note 4.3)	$\Delta_{2nd}/\Delta_{1st} \leq 1.5$	Specification Appendix 7.2
Direct Analysis Method —second-order analysis with notional lateral load and reduced <i>EI</i> and <i>AE</i> (see Note 4.3)	K = 1 for all frames	From analysis (see Note 4.3)	None	Specification Chapter C
Notes	<u> </u>	<u> </u>		

 $\Delta_{2nd}/\Delta_{1st}$ is the ratio of the second-order drift to first-order drift, which is also represented by B_2 .

4.1 Derived from the effective length method, using B_1 - B_2 approximation with B_1 taken equal to B_2 .

4.2 An additional amplification for member curvature effects is required for columns in moment frames.

can be taken equal to the multiplier tabulated for the simplified method above.

Condition									ASD)			LRFD	Related Info			
Tension								.6F _y A	$A_g \leq C$		4 _e		$0.9F_yA_g \leq 0.75F_uA_e$	For A _e , see AISC Specification Equation D3-1.			
Bending	Douding			ISS			0.66F _v S						0.99 <i>F_yS</i>	See Note 3.1.			
Denuing		Round H	Round HSS and Pipe						.78F _y	,S			1.17F _y S	See Note 3.2.			
Shear	0			ISS			$0.36F_vA_w$						$0.54F_{\gamma}A_{w}$	See Note 3.3.			
Silear		Round H		$0.18F_{v}A_{q}$						$0.27F_{\gamma}A_{g}$	See Note 3.4.						
			r ≤ 80	00/ <i>\</i> F	y		0.6 <i>F_yA_g</i> (0.658) ^P						$0.9F_yA_g(0.658)^p$	$E_{\rm r}(I_{\rm c}/r)^2$			
Compress	Compression			00/ <i>\</i> F	y		$\frac{150,000A_g}{\left(L_c/r\right)^2}$						$\frac{226,000A_g}{\left(L_c/r\right)^2}$	$P = \frac{F_y (L_c/r)^2}{286,000}$ See Note 3.5.			
Table 3.1. Size Limits for Rectange								ular HSS, in.*					Notes 3.1 Not applicable if size limit from Table 3.1 at left is exceeded (see				
Nominal W	ness, in.	7⁄8	3⁄4	5⁄8	1⁄2	3⁄8	8 5/16	1⁄4	3⁄16	1⁄8	3.2	Section F7).					
	Flange	22 20 16 1		12	10	8	6	5	5 3		3.3 Not applicable if size limit from Table 3.1 at left is exceede						
Bending	Web	24 24 24 24				24	20	18	14	10	7	3.4	Section G4). 3.4 Equations provided for shear yielding. See AISC Specification				

10 7

6 4

Pipe ASTM A53 Grade B

ASTM A500 Grade C $F_v = 46$ ksi

ASTM A1085 Grade A $|F_v = 50$ ksi

Section G5 for shear buckling provisions.

Round

 $F_{v} = 35$ ksi

 $F_{\mu} = 62 \text{ ksi}$

 $F_{\mu} = 65 \text{ ksi}$

 $F_{\mu} = 60$ ksi

3.5 For rectangular HSS, if size limit from Table 3.1 at left is exceeded use A_e from AISC Specification Section E7 in place of A_a . For round HSS and Pipe where $D/t > 3,190/F_{y}$, use A_e from AISC Specification Section E7 in place of A_q .

> **AMERICAN INSTITUTE OF STEEL CONSTRUCTION** www.aisc.org © AISC 2019

Shear

Compression

*Table only covers up to 88-in. periphery

ANSI/AISC 360-16 is available free at aisc.org/specifications.

Condition									ASD					LRFD	Related
Tension							$0.6F_yA_g \leq 0.5F_uA_e$							$0.9F_yA_g \leq 0.75F_uA_e$	For A _e , see AISC S Equation I
Bending		Rectang	ular H	ISS				0	.66F _y	,S				0.99 <i>F_yS</i>	See Note
Denuing		Round H	Round HSS and Pipe						.78F _y	,S				1.17 <i>F_yS</i>	See Note
Shear		Rectange		$0.36F_vA_w$							$0.54F_yA_w$	See Note			
Silear		Round H		$0.18F_vA_q$							$0.27F_yA_g$	See Note			
		L_c/l		0.6 <i>F_yA_g</i> (0.658) ^P							$0.9F_{y}A_{g}(0.658)^{P}$	E (I			
Compress	L _c /	r > 80	00/√F	y y		$\frac{150,000A_g}{\left(L_c/r\right)^2}$							$rac{226,000 A_g}{\left(L_c/r\right)^2}$	$P = rac{F_y(L_c)}{286},$ See Note	
	ngul	ular HSS, in.*						Not 3.1	es Not applicable if size limit fr	om Table 3.1 at left is e					
Nominal V	kness, in. 7/8 3/4 5/8 1/2				1⁄2	3⁄8	5⁄16	1⁄4	3⁄16	1⁄8		Section F7). 3.2 Not applicable if $D/t > 2,03$			
	Flange				12	10	8	6	5	3		3.2 3.3	Not applicable if size limit from	om Table 3.1 at left is ex	
Bending	Web		24	20	18	14	10	7	3	3.4	Section G4). 4 Equations provided for shear yielding. See A				

18 14

24 24 24

24 20

24 24 20 16 12 10 8

HSS

Basic **Design Values**

This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2016 AISC Specification (ANSI/AISC 360-16) may be less constrained and less conservative.

- 4.3 The B_1 - B_2 approximation (Appendix 8) can be used to accomplish a second-order analysis within the limitation that $B_2 \le 1.5$. Also, B_1 and B_2