AISC N690-XX

Specification for

Safety-Related Steel Structures

for Nuclear Facilities

Chapter NM—Page 51 Chapter NM—Page 51 App N9 Sec. N9.1.4b—Page 89 App N9 Sec. N9.1.7a—Page 92 App N10 Sec.—Page 119

the PDF): Chapter NA—Page 21

Commented [GN1]: <u>Public Review Scope:</u> Only revisions that are shown with tracked changes in Chapter NA, Chapter NM, Appendix N9, and Appendix N10 are open for public comments at this time. The rest of the draft is provided for context.

You will find revisions on the following pages: (also bookmarked in

Draft Dated May 2, 2024

Supersedes the Specification for Safety-Related Steel Structures for Nuclear Facilities dated June 28, 2018

AMERICAN INSTITUTE OF STEEL CONSTRUCTION 130 East Randolph Street, Suite 2000, Chicago, Illinois 60601 www.aisc.org

PUB.

SYMBOLS

1 2 3

4 5 6

7

Definitions for the symbols used in this standard are provided here and reflect the definitions provided in the body of this standard. Some symbols may be used multiple times throughout the document. The section or table number shown in the right-hand column of the list identifies the first time the symbol is used in this document. Symbols without text definitions are omitted.

/	without	text definitions are omitted.		
8	~		~	
9	Symbol	Definition	Section	C ON
10				Xal
11	A_c	Area of concrete infill per unit width, in. ² /ft (mm ² /m)		
12	A_g	Gross area of member, in. ² (mm ²)		
13	A_s	Gross area of faceplates per unit width, in. ² /ft (mm^2/m)	App. N9.1.1	
14	$A_s^{\ F}$	Gross area of faceplate in tension due to flexure		
15	4	per unit width, in. ² /ft (mm ² /m)		
16 17	A_{sn} C	Net area of faceplates per unit width, in. ² /ft (mm ² /m)		
17	-	Rated capacity of crane Dead loads due to weight of the structural elements, fixed-	NB2.1	
18	D	Dead loads due to weight of the structural elements, fixed-		
		position equipment, and other permanent appurtenant items;	ND2.1	
20 21	D	weight of crane trolley and bridge Outside diameter of round HSS, in. (mm)T	NB2.1	
21	D D_m	Maximum deflection from analysis, in. (mm)		
22	D _m D _{tie}	Equivalent diameter of shear reinforcement, in. (mm)		
23 24	D_{tie} D_v	Effective yield deflection, in. (mm)		
24 25	$\frac{D_y}{E}$	Modulus of elasticity of steel = 29,000 ksi (200 000 MPa) T		
23 26		Modulus of elasticity of sicci = 22,000 ks (200 000 km a) I Modulus of elasticity of concrete = $w_c^{1.5}\sqrt{f_c}$, ksi, (0.043 $w_c^{1.5}\sqrt{f_c}$		
26 27	E_c	Modulus of elasticity of concrete $-w_c = v_f c$, ksi, $(0.045w_c = v_f c)$	T_{a} (MPa)	
27	E(T)	Modulus of elasticity of concrete at elevated temperature, ksi (M		
28 29	$E_c(T)$	Modulus of elasticity of concrete at elevated temperature, ksi (M		
29 30	E_m	As-modeled material elastic modulus used in elastic finite elemer		
31	L_m	analysis of SC panel section, ksi (MPa)		
32	E_o	Loads generated by operating basis earthquake		
33	L_0	Loads generated by operating basis canniquake	NB2 2	
33 34	E_s	Loads generated by the safe shutdown earthquake, or design b		
35	L_S	Loads generated by the safe shutdown cartinquake, or design b	*	
36	E_s	Modulus of elasticity of steel	Ann N913	
37	123	= 29,000 ksi (200 000 MPa) for carbon steel and duplex stainless		
38		= 28,000 ksi (193000 MPa) for austenitic stainless steel		
39	(EI) _{eff}	Effective flexural stiffness for analysis of SC structural elements	per unit width.	
40	(11)())	kip-in. ² /ft (N-mm ² /m)		
41	(EI) _{eff}	Effective SC stiffness per unit width used for buckling evaluation		
42	()-00	kip-in. ² /ft (N-mm ² /m)		
43	F	Loads due to weight and pressures of fluids with well-defined	11	
44		densities and controllable maximum heights	NB2.1	
45	F_{e}	Elastic buckling stress, ksi (MPa)T		
46	F_{nr}	Nominal rupture strength of the tie, or the nominal strength of the		

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

47		associated welded or threaded connection, whichever is smaller, kips (N)App.	
48		N9.1.5a	
49	F_{nv}	Nominal yield strength of the tie based on its gross area if no threads are present,	
50		and on its root area if it is threaded, kips (N)App. N9.1.5a	
51	F_t	Nominal tensile strength of tie, kips (N)	
52	F_u	Specified minimum tensile strength, ksi (MPa)NJ3.11	
53	F_{v}	Specified minimum yield stress, ksi (MPa). As used in this Specification,	
54		"yield stress" denotes either the specified minimum yield point (for those	
55		steels that have a yield point) or specified yield strength (for those steels	
56		that do not have a yield point)	
57	(GA)eff	Effective in-plane shear stiffness per unit width, kip/ft (N/m) App. N9.2.2	<u>A</u> V
58	(GA)uncr	r In-plane shear stiffness per unit width of uncracked composite SC panel	
59		section, kip/ft (N/m)App. N9.2.2	
60	G_c	Shear modulus of concrete, ksi (MPa)App. N9.2.2	
61	G_s	Shear modulus of elasticity of steelApp. N9.2.2	
62		= 11,200 ksi (77 200 MPa) for carbon steel and duplex stainless steel	7
63		= 10,800 ksi (74 500 MPa) for austenitic stainless steel	
64	Н	Loads due to weight and pressure of soil, water in soil, or bulk	
65		materialsNB2.1	
66	I_c	Moment of inertia of concrete infill per unit width, in. ⁴ /ft (mm ⁴ /m)App. N9.2.2	
67	I_s	Moment of inertia per unit width of faceplates	
68		(corresponding to the condition when the concrete is fully	
69		cracked), in. ⁴ /ft (mm ⁴ /m) App. N9.2.2	
70	K_p	Strength-dependent concrete penetrability factorApp. N10.3.2	
71	K_{psc}	Penetration depth modification factor for SC cross sectionApp. N10.3.2	
72	L	Live load due to occupancy and moveable equipment, including	
73		impact	
74	L_c	Effective length of member, in. (mm)	
75	L_d	Development length, in. (mm)App. N9.1.4b	
76	L_r	Roof live load	
77 79	M_n	Nominal flexural strength per unit width, kip-in./ft (N-mm/m)App.	
78 79	N9.1.4b		
79 80	M_{rx}, M_{ry}		
	м	(N-m/m)App. N9.2.4 Required twisting moment strength per unit width,	
81 82	M_{rxy}	kip-in./ft (N-mm/m)App. N9.2.5	
82 83	Ν	Missile nose shape factor per the modified NDRC formulaApp. N10.3.2	
83 84	P_a	Maximum differential pressure load generated by postulated	
85	I a	accident	
86	P_{ci}	Available compressive strength per unit width for each	
87	1 Cl	notional half of SC panel section, kip/ft (N/m)App. N9.3.6b	
88	P_{e}	Elastic critical buckling load per unit width, kip/ft (N/m)App. N9.3.2	
89	P _{no}	Nominal compressive strength per unit width, kip/ft (N/m)	
90	Q_{cv}	Available shear strength of shear connector, kips (N)	
91	Q_{cv}^{avg}	Weighted average of the available interfacial shear strengths of a group of shear	
92	ZUV	connectors that accounts for tributary areas of each type of connector, kips (N)	

93		
93 94	R	Rain loadNB2.1
95	R_a	Pipe and equipment reactions generated by a postulated
96	1 cu	accident, including R_o
97	R_a	Required strength using ASD load combinationsNB2.6
98	R_n	Nominal strength
99	R_o	Pipe reactions during normal operating, start-up or shutdown
00	\mathbf{n}_{0}	conditions, based on most critical transient or steady-state
01		condition
02	R_u	Required strength using LRFD load combinationsNB2.5
02	R_v	Ratio of the expected yield stress to the specified minimum yield stress, F_{y_i}
03	Ny	of that material
04	S	Snow load
		In-plane shear force per unit width at concrete cracking threshold,
06	S_{cr}	kip/ft (N/m)App. N9.2.2
07	c	Maximum required principal in-plane strength per unit width for
08 09	Sr,max	notional half of SC panel section, kip/ft (N/m)App. N9.3.6b
	C	
10	$S_{r,min}$	Minimum required principal in-plane strength per unit width for
11	C	notional half of SC panel section, kip/ft (N/m)
12	S_{rx}	Required membrane axial strength per unit width in direction x, kip/ft (N/m)
13	C	App. N9.2.5
14	S_{rxy}	Required membrane in-plane shear strength per unit width, kip/ft (N/m)App. N9.2.2
15	C	unit width, kip/ft (N/m)
16	S_{ry}	Required membrane axial strength per unit width in direction y, kip/ft (N/m)
17	CI.	
18	S'_{rx}	Required membrane axial strength per unit width in direction x for
19	CI.	each notional half of SC panel section, kip/ft (N/m) App. N9.3.6b
20	S'_{rxy}	Required membrane in-plane shear strength per unit width for
21		each notional half of SC panel section, kip/ft (N/m) App. N9.3.6b
22	S'_{ry}	Required membrane axial strength per unit width in direction y for
23		each notional half of SC panel section, kip/ft (N/m)App. N9.3.6b
24	T_a	Thermal loads generated by a postulated accident, including ToNB2.4
25	T_{ci}	Available tensile strength per unit width for each notional half
26		of SC panel section, kip/ft (N/m)App. N9.3.6b
27	T_{ni}	Nominal tensile strength per unit width
28		of SC panel section, kip/ft (N/m)App. N9.3.6b
29	T_o	Thermal effects and loads during normal operating, start-up or shutdown
30		conditions, based on most critical transient or steady-state conditionNB2.1
31	V_c	Available out-of-plane shear strengths per unit width of SC panel
32		section in local $x(V_{cx})$ and $y(V_{cy})$ directions, kip/ft (N/m)App. N9.3.6a
33	$V_{c \ conc}$	Available out-of-plane shear strength contributed by concrete per
34		unit width of SC panel section, kip/ft (N/m) App. N9.3.6a
35	V_{ci}	Available in-plane shear strength per unit width for each notional
36		half of SC panel section, kip/ft (N/m) App. N9.3.6b
37	V_{conc}	Nominal out-of-plane shear strength contributed by concrete per
38		unit width of SC panel section, kip/ft (N/m)App. N9.3.5

139	V_i	Initial (pre-impact) velocity of missile, ft/s (m/s)App. N10.3.2	
140	V_{ni}	Nominal in-plane shear strength per unit width of SC panel	
141	, 11	section, kip/ft (N/m)	
142	V_{no}	Nominal out-of-plane shear strength per unit width of SC panel	
143	v no	section, kip/ft (N/m) App. N9.3.5	
144	V_p	Perforation velocity for reinforced concrete section of same thickness, ft/s	
145	v p	(m/s)App. N10.3.2	
146	V_r	Required out-of-plane shear strength per unit width of SC panel section in local	
140	Vr	$x (V_{rx})$ and $y (V_{ry})$ directions using LRFD or ASD load combinations, kip/ft (N/m)	
147		$x (v_{rx})$ and $y (v_{ry})$ directions using EKFD of ASD foad combinations, kip/it (19/iii) 	C ON
140	V_r	Residual velocity of a missile passing through concrete, ft/s (m/s).App. N10.3.2	X
149		Required out-of-plane shear strength per unit width along edge parallel to	
150	V_{rx}		
	17	direction x, kip/ft (N/m)App. N9.2.5	
152	V_{ry}	Required out-of-plane shear strength per unit width along edge parallel to	
153		direction y, kip/ft (N/m)App. N9 2.5	
154	W	Wind loadNB2.2	
155	W_{cf}	Weight of the concrete frustum (plug) associated with x_{sc} , the penetration depth,	
156		of the impacting missile, lb (N)App. N10.3.2	*
157	W_p	Missile weight, lb (N)App. N10.3.2	
158	W_t	Loads generated by the specified design (basis) tornado, including wind	
159		pressures, pressure differentials, and tornado-borne missilesNB2.3	
160	Y_j	Jet impingement load generated by the postulated accident	
161	Y_m	Missile impact load, such as pipe whip generated by or during	
162		Missile impact load, such as pipe whip generated by or during the postulated accidentNB2.4	
163	Y_r	Loads on structure generated by reaction of a broken	
164		high-energy pipe during a postulated accident	
165	b	Largest unsupported length of the faceplate between rows of shear connectors,	
166		in. (mm)NM2.7	
167	b	Width of compression element as shown in Table A-N10.2.1, in. (mm)	
168			
169	c_2	Calibration constant for determining effective flexural stiffnessApp. N9.2.2	
170	C_m	As-modeled specific heat used in elastic finite element analysis of SC	
171		panel section, Btu/lb-°F (J/kg-°C) App. N9.2.3	
172	d	Full depth of the section, in. (mm) Table A-N10.2.1	
173	d	Nominal diameter of fastener, in. (mm)NJ3.11	
174	d	Effective diameter of the missile, in (mm)App. N10.3.2	
175	f_w	Faceplate wavinessNM2.7	
176	f_c	Specified compressive strength of concrete, ksi (MPa) Table NA-4.2.2	
177	$f'_c(T)$	Specified compressive strength of concrete at elevated temperature, ksi (MPa)	
178	5 -()	Table NA-4.2.2	
179	g	acceleration due to gravityApp. N10.3.2	
180	0	$= 386.4 \text{ in./s}^2 (9.81 \text{ m/s}^2)$	
181	h	Width of compression element as shown in Table A-N10.2.1, in. (mm)	
182		Table A-N10.2.1	
183	jx, jv	Parameter for distributing required flexural strength into the	
184	JA, JY	corresponding membrane force couple acting	
- ·		1 00	

185		on each notional half of SC panel sectionApp. N9.3.6b
186	j_{xy}	Parameter for distributing required flexural strength, M _{rxy} ,
187		into the corresponding membrane force couples acting
188		on each notional half of SC panel sectionApp. N9.3.6b
189	k_m	As-modeled thermal conductivity used in the elastic finite element analysis of
190		SC panel sections, Btu/ft-sec-°F (W/m-°C)App. N9.2.3
191	l_c	Clear distance, in the direction of the force, between the edge of the hole
192		and the edge of the adjacent hole or edge of the material, in. (mm)NJ3.11
193	п	Modular ratio of steel and concreteApp. N9.2.2
194	r	Radius of gyration, in. (mm)
195	r_1	effective radius of the missile, in. (mm) App. N10.3.2
196	r_2	concrete frustum radius at penetration depth equal to x_{sc} , in.
197		(mm) App. N10.3.2
198	S	Spacing of steel anchors, in. (mm) NM2.7
199	S_{tl}	Spacing of ties in the longitudinal direction, in. (mm)App. N9.1.5b
200	St, min	Minimum tie spacing, in. (mm) NM2.7
201	S_{tt}	Spacing of ties in the transverse direction, in. (mm)App. N9.1.5b
202	t	Thickness of connected material, in. (mm)NJ3.11
203	t	Thickness of element as shown in Table A-N10.2.1, in. (mm)
204		Table A-N10.2.1
205	t_c	Concrete infill thickness, in. (mm)App. N9.2.2
206	t_m	As-modeled section thickness of SC panel section, in. (mm)App. N9.2.3
207	t_p	Thickness of faceplate, in. (mm)NM2.7
208	t _{p, min}	Minimum required thickness of faceplate, in. (mm)App. N10.3.2
209	t_{sc}	SC section thickness, in. (mm)App. N9.1.1 Thickness of web, in. (mm)
210	t_w	
211	x_c	Concrete penetration depth for the reinforced concrete section of the same
212		thickness as the SC cross section, calculated using the modified NDRC formula,
213		in. (mm)App. N10.3.2
214	x_{sc}	Missile penetration depth into the SC cross section, in. (mm)App. N10.3.2
215	ΔT_{savg}	Average of the maximum surface temperature increases for the faceplates
216		due to accident thermal conditions, °F (°C) App. N9.2.2
217	ΔT_{sg}	Maximum temperature difference between faceplates due to
218		accident thermal conditions in °F (°C) App. N9.2.4b
219	θ	Inclination angle of the concrete frustum extending from the penetration depth of
220	the imp	acting missile to the back faceplate of the impacted SC sectionApp. N10.3.2
221	Ω	Safety factorNB2.6
222	Ω_{ci}	Safety factor for compression for each notional half App. N9.3.6b
223	Ω_{ti}	Safety factor for tension for each notional half App. N9.3.6b
224	Ω_{vi}	Safety factor for in-plane shear App. N9.3.4
225	Ω_{vo}	Safety factor for out-of-plane shear App. N9.3.5
226	Ω_{vs}	Safety factor for in-plane shear for each notional half App. N9.3.6b
227	α	Ratio of available in-plane shear strength to available tensile
228		strength for each notional half of SC panel sectionApp. N9.3.6b
229	α_m	As-modeled thermal expansion coefficient used in the elastic finite
230		element analysis of SC panel section, °F ⁻¹ (°C ⁻¹)App. N9.2.3
		Specification for Safety-Related Steel Structures for Nuclear Facilities

Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

231	α_p	Missile deformability factorApp. N10.3.2
232	α_s	Thermal expansion coefficient of faceplate, ${}^{\circ}F^{-1}$ (${}^{\circ}C^{-1}$)App. N9.2.4b
233	β	Ratio of available in-plane shear strength to available compressive
234	•	strength for each notional half of SC panel section App. N9.3.6b
235	γ_m	As-modeled material density used in elastic finite element
236	1	analysis of the SC panel section, lb/ft ³ (kg/m ³)App. N9.2.3
237	ξ	Factor used to calculate shear reinforcement contribution to
238	2	out-of-plane shear strength (depends on whether the shear
239		reinforcement is yielding or nonyielding type)App. N9.3.5
240	c (T)	Concrete strain corresponding to $f'_c(T)$ at elevated temperature, in./in. (mm/mm)
240 241	$\varepsilon_{cu}(T)$	
		Table NA-4.2.2
242	ε_{st}	Strain corresponding to the onset of strain hardening
243	ϵ_u	Strain corresponding to elongation at failure (rupture) Table A-N10.2.2
244	ϵ_y	Strain corresponding to nominal yield stress
245	μ_p	Permissible ductility ratioApp. N10.2.4
246	μ_r	Required ductility ratioApp. N10.2.4
247	ν_m	As-modeled poisson's ratio used in elastic finite element analysis of the SC
248		panel sectionApp. N9.2.3
249	ρ	Reinforcement ratio
250	ρ _c	Concrete density, lb/ft ³ (kg/m ³)App. N10.3.2
251	$\overline{\rho}$	Strength-adjusted reinforcement ratioApp. N9.2.2
	-	Stiffness-adjusted reinforcement ratio
252	ρ′	Stiffness-adjusted reinforcement ratioApp. N9.2.2
253	σ_r	Equivalent radial compressive stress in the rear faceplate, based on von Mises
254		yield criterion, ksi (MPa)App. N10.3.2
255	ø	Resistance factorNB2.5
256	ϕ_{ci}	Resistance factor for compression for each notional halfApp. N9.3.6b
257	ϕ_{ti}	Resistance factor for tension for each notional halfApp. N9.3.6b
258	ϕ_{vi}	Resistance factor for in-plane shear App. N9.3.4
259	ϕ_{vo}	Resistance factor for out-of-plane shearApp. N9.3.5
260	ϕ_{vs}	Resistance factor for in-plane shear for each notional half App. N9.3.6b
261	1.5	
262		
		NU

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

GLOSSARY

The terms listed below shall be used in addition to or replacements for those in the AISC*Specification for Structural Steel Buildings*.

Analysis calculation. Document detailing the process used to determine the required
 strength and anticipated settlements and deflections of a structure under the applied loads.

Authority having jurisdiction (AHJ). Federal government agency (or agencies), such as the
 Nuclear Regulatory Commission or the Department of Energy, that is empowered to issue
 and enforce regulations affecting the design, construction and operation of nuclear
 facilities.

Certificate of compliance. Document written by the fabricator to affirm that the material
 was procured, dedicated, fabricated, coated, inspected and documented in accordance with
 the requirements of the standard and the contract documents.

Certified material test report (CMTR). Document identifying the chemical analysis,
 physical test data, and any other testing necessary to show compliance of the item for which
 the CMTR is supplied.

285 Connection region. A designated strip along the edge of any two intersecting structural 286 elements (for example, slabs, walls and basemats) where force transfer between the 287 connected elements is required to be accomplished.

- Dedication. The process in which critical characteristics for a commercially obtained
 material or component are identified and validated for use in safety-related applications by
 inspections, testing, or analyses.
- 291

263 264

265

268 269

277

281

Design basis earthquake (or) design/evaluation basis earthquake (DBE). See safe
shutdown earthquake (SSE). Term used in connection with U.S. Department of Energy
(DOE) facilities; also used interchangeably for older nuclear power facilities.

296 *Design calculation.* Document detailing the process used to proportion the members, 297 connections, and structure to have adequate available strength, constructability, and 298 serviceability.

299

300 *Design documents.* Analysis and design calculations, design drawings, design models, or a 301 combination of drawings and models as well as construction specifications. In this 302 Specification, reference to these design documents indicates design documents that are 303 issued for construction.

304

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

305 Ductile limit state. Ductile limit states include member and connection yielding, bearing
 306 deformation at bolt holes, as well as buckling of members that conform to the width-to 307 thickness limitations of Table NB3.4. Fracture of a member or of a connection, or buckling
 308 of a connection element, is not a ductile limit state.

309

310 *Dynamic increase factor (DIF).* Factor that accounts for increase in nominal yield strength 311 of the material for loading applied at high strain rates (i.e., impulsive and impactive loads).

- 312 *Dynamic load factor (DLF)*. Amplification factor applied to the peak (positive or negative)
 313 load to account for the dynamic effects of impulsive and impactive loads.
- *Effective flexural stiffness.* Cracked transformed flexural stiffness of the steel-plate
 composite structural element used for elastic finite element analysis.
- *Effective in-plane shear stiffness.* Cracked transformed shear stiffness of the steel-plate
 composite structural element used for elastic finite element analysis.
- 318 *Effective steel-plate composite (SC) stiffness*. Effective stiffness of the steel-plate 319 composite panel section used for buckling evaluation.

321 *Engineer of record (EOR).* Individual or organization, designated by the owner, 322 responsible for the preparation of the plans and specifications for the nuclear facility 323 structures or for the evaluation of the existing structure(s). The engineer of record as an 324 individual or part of an organization is a licensed professional engineer, qualified to fulfill 325 the assigned responsibility.

326

320

- *Faceplates.* The two exterior steel plates of a steel-plate composite structural element (slab,wall, or basemat) that serve as its reinforcement.
- 329

Faceplate waviness. The waviness of steel-plate composite module faceplates after
 concrete curing, measured as the distance of the lowest point (trough) from the straight line
 joining two adjacent high points (crests).

- 333
- 334 Impactive force. Time-dependent loads due to the collision of solid masses that are associated with finite amounts of kinetic energy, where the impactive load is determined by the inertia and stiffness properties of the impactor and the target structure.
- 337

Impulsive force. Time-dependent load (force or pressure) for which the rate of loadingand its duration affect the structural response.

- 340
- *Interior region.* Region of steel-plate composite structural element that is bounded by thedesignated connection region strips.

343 344 345 346	Jet impingement load. Force-time history depicting the forces resulting from the direct strike by a dense, high-velocity jet of steam or water onto a structure, system, or component.
347	
348 349 350	<i>Jet shield.</i> Device used to protect adjacent structures, systems or components from the effects of a dense, high-velocity jet of steam or water, resulting from the rupture of a high-energy pipe line.
351	
352 353 354	<i>Large opening</i> . Openings in steel-plate composite structural elements with the largest dimension greater than half the section thickness.
355 356	<i>Missile impact.</i> Collision of a projectile [for example, tornado-borne missile (see definition) or plant-generated missile] with a structure, system or component.
357	
358 359	Module. A combination of sub-modules.
360 361 362	<i>Nonyielding shear connector.</i> Shear connector that does not meet the requirements of a yielding shear connector per Section N9.1.4a.
363 364	Nonyielding shear reinforcement. Ties that do not meet the requirements of yielding shear reinforcement.
365	
366 367	No paint area. Defined area on a member within which painting or coating is prohibited
368 369	until the field weld designated for that location has been completed.
370 371 372 373	<i>Notional half.</i> Each half of the steel-plate composite panel section consisting of one faceplate and half the concrete thickness.
374	Operating basis earthquake (OBE). Earthquake that produces vibratory ground motion for
375	which those features of the nuclear power plant necessary for continued operation without
376	undue risk to the health and safety of the public will remain functional. Unless elected by
377	the Owner as a design input, the OBE is only associated with plant shutdown and
378	inspection.
379	
380 381	<i>Owner</i> . Organization responsible for the design, construction, operation, maintenance and safety of the nuclear facility.
382	
383 384	<i>Panel.</i> Basic shippable modular unit; typically fabricated in the shop and then shipped to the field.

385

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Panel section. The extent of the steel-plate composite structural element over which the 386 387 demands are averaged to calculate the required strengths. 388 389 Permissible ductility ratio. Ratio of maximum permitted inelastic deflection to the 390 deflection at the effective yield point on the idealized bilinear elastic-plastic force-391 deflection diagram. 392 393 Plastic instability. Member response that is characterized by a limit state of sustained 394 negative stiffness in the stress-strain or load-deflection curve. 395 396 Quality assurance (QA). In safety-related work, the program identifying the planned or 397 systematic actions necessary to provide confidence that an item or facility will be designed, 398 fabricated, erected or constructed in accordance with the plans and specifications. 399 400 Quality assurance inspector (QAI). Individual(s) designated to independently provide 401 quality assurance inspection for the work being performed. 402 403 *Quality control (QC).* In safety-related work, a process employed by the fabricator, erector 404 or constructor to verify that the item or facility is fabricated, erected or constructed in 405 accordance with the plans and specifications. 406 407 Quality control inspector (QCI). Individual(s) designated to provide quality control 408 inspection for the work being performed. 409 410 Required ductility ratio. The ratio of maximum inelastic strain (or deflection) to the 411 effective yield strain (or deflection) obtained by performing inelastic analysis considering 412 bilinear (or multilinear) stress-strain (or force-deflection) behavior. 413 414 Rib. Steel section used to increase faceplate stiffness and strength to handle rigging and 415 construction loads (for example, wet concrete pressure) before the concrete hardens and to 416 serve as a shear connector thereafter. 417 418 Safe shutdown earthquake (SSE). Earthquake that produces the vibratory ground motion 419 for which certain structures, systems, and components in the nuclear power plant must be 420 designed to remain functional (see Appendix S of 10CFR50). In DOE nuclear facilities 421 and older nuclear power plants, design basis earthquake or design/evaluation basis earthquake (DBE) is used, conveying the same meaning as SSE for design purposes. 422 423 424 Safety-related. Classification that applies to structures, systems or components used in a 425 nuclear power plant that are relied upon during or following design basis events to ensure: 426 (1) The integrity of the reactor coolant pressure boundary; 427 (2) The capability to shut down the reactor and maintain it in a safe shut down condition; 428 or

> Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

429 (3) The capability to prevent or mitigate the consequences of accidents that could result in430 potential offsite exposures comparable to the guideline exposures of 10CFR100.

431

439

441

432 Shear connector. Embedded structural steel element in steel-plate composite construction,
433 such as a rib, steel headed stud anchor, anchor made of a shape or plate, and a tie, that
434 enables composite action between concrete infill and steel faceplates.

435
436 Steel-plate composite (SC) structural element. A structural element consisting of two steel
437 faceplates acting compositely with structural concrete infill, where the faceplates are
438 connected together with ties and, if needed, additional shear connectors.

440 Section thickness. The total thickness of the steel-plate composite panel section.

Small opening. An opening in the steel-plate composite structural element with the largestdimension not greater than half the section thickness.

444 Specified design (basis) tornado. Combination of translational speed, rotational speed, and

445 prescribed pressure drop related to the environmental effects of a tornado (as defined by

the licensing basis, design basis, and/or regulatory requirements; for example, U.S. NuclearRegulatory Commission (NRC) Regulatory Guide 1.76).

(interpresented) commission (interpresented) Suide 1.70).

Sub-module. A combination of panels in a co-planar, L-shaped, T-shaped, corner, or any
 other pattern that is suitable for further assembly into a module.

450 *Tie.* Discrete structural component such as a steel shape, frame, or bar that connects two 451 faceplates of an steel-plate composite element together at regular intervals.

452 *Tornado-borne missiles*. Missiles of specific weight and velocity (as defined by the AHJ
453 for the facility site) and assumed to impact structures after becoming airborne as a result
454 of tornado winds and pressures.
455

456 *Yielding shear reinforcement.* Ties with nominal yield strength less than or equal to 0.85
 457 times the nominal rupture strength and 0.85 times the nominal strength of the associated
 458 connection.

459 460

461

462

463

- 464
- 465

466

467

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

RUBL202A

ABBREVIATIONS

468 469

470 The following abbreviations appear in this *Nuclear Specification*. The abbreviations are

471 written out when they first appear within a Section.

472 *ABC* (applicable building code) 473 ACI (American Concrete Institute) 474 AHJ (authority having jurisdiction) 475 AISC (American Institute of Steel Construction) 476 AISI (American Iron and Steel Institute) 477 ANSI (American National Standards Institute) ASCE (American Society of Civil Engineers) 478 479 ASD (allowable strength design) 480 ASME (American Society of Mechanical Engineers) 481 ASNT (American Society for Nondestructive Testing) 482 ASTM (ASTM International) 483 AWI (associate welding inspector) 484 AWS (American Welding Society) 485 CFR (U.S. Code of Federal Regulations) 486 *CJP* (complete joint penetration) 487 CMAA (Crane Manufacturers Association of America) 488 CMTR (certified material test report) 489 CVN (Charpy V-notch) 490 DBE (design basis earthquake or design/evaluation basis earthquake) 491 DIF (dynamic increase factor) 492 DLF (dynamic load factor) 493 DOE (U.S. Department of Energy) 494 EOR (engineer of record) 495 EPRI (Electric Power Research Institute) 496 HSS (hollow structural section) 497 HVAC (heating, ventilation and air conditioning) 498 LOCA (loss-of-coolant accident) 499 *LRFD (load and resistance factor design) MT* (magnetic particle testing) 500 501 *NDE (nondestructive examination)* NRC (U.S. Nuclear Regulatory Commission) 502 503 *OBE* (operating basis earthquake) 504 *PJP* (partial joint penetration) 505 *PQR* (procedure qualification record) 506 *PT* (penetration testing) 507 *QA* (quality assurance) 508 *QAI* (quality assurance inspector) 509 QC (quality control) QCI (quality control inspector) 510 511 *RC* (reinforced concrete) 512 RCSC (Research Council on Structural Connections)

- 513 RT (radiographic testing)
- 514 SC (steel-plate composite)
- 515 SEI (Structural Engineering Institute)
- 516 SSE (safe shutdown earthquake)
- 517 *SWI (senior welding inspector)*
- 518 UT (ultrasonic testing)
- 519 *WI* (welding inspector)
- 520 *WPQR* (welding personnel performance qualification records)
- 521 WPS (welding procedure specification)

5~

, 2A, 1

IFMURE

CHAPTER NA

523 GENERAL PROVISIONS 524

522

525 526

527

533

536

544 545

546

551

554

Modify Chapter A of the Specification as follows.

*Replace preamble with the following:*529

This chapter states the scope of the *Specification for Safety-Related Steel Structures for Nuclear Facilities*; summarizes referenced specification, code, and standard documents;
 and provides requirements for materials and design documents.

534 The chapter is organized as follows:535

- NA1. Scope
- 537 NA2. Referenced Specifications, Codes, and Standards
- 538 NA3. Material
- 539 NA4. Structural Design Documents and Specifications
- 540 NA5. Approvals
- 541 NA6. Quality Assurance542

543 NA1. SCOPE

Replace section with the following:

547 The Specification for Safety-Related Steel Structures in Nuclear Facilities,
548 hereafter referred to as the Nuclear Specification, shall apply to the design,
549 fabrication, erection, and quality of safety-related steel structures and steel elements
550 in nuclear facilities.

- 552The Chapter, Appendix, and Section designations within the Nuclear Specification553are preceded by letter N to denote nuclear facility provisions.
- The Nuclear Specification is compatible with the AISC Specification for Structural
 Steel Buildings (ANSI/AISC 360), hereafter referred to as the Specification.
 Provisions of the Specification are applicable unless stated otherwise. Only those
 sections that differ from the Specification provisions are indicated in the Nuclear
 Specification.
- 561 The Nuclear Specification includes the list of Symbols, Glossary terms, 562 Abbreviations, Chapters NA through NN, and Appendices N1 through N10. The 563 Commentary and User Notes interspersed throughout the Nuclear Specification are 564 not part of the Nuclear Specification. The phrases "is permitted" and "are 565 permitted" in this document identify provisions that comply with the Nuclear 566 Specification, but are not mandatory.

567		
568	User Note: User notes are intended to provide concise and practical guidance in	
569	the application of the provisions.	
570		
571	User Note: With the exception of Appendix N9, this standard does not include	
572	seismic detailing requirements for safety-related nuclear structures constructed	
573	using structural steel and composite members. The authority having jurisdiction	
574	may adopt the pertinent requirements in ASCE 43.	
575		
576	For SC structural elements and their connections, the design and detailing	
577	requirements specified in Appendix N9 are adequate for seismic applications.	
578		
579		
580	The steel elements shall be as defined in the AISC <i>Code of Standard Practice for</i>	
581	Steel Buildings and Bridges (ANSI/AISC 303), Section 2.1, hereafter referred to as	A
582	the Code of Standard Practice.	
583		
584	Structures and structural elements subject to the Nuclear Specification are those	
585	steel structures and structural elements that are part of a safety-related system or	
586	that support, house or protect safety-related systems or components, the failure of	
587	which could credibly result in the loss of capability of the structure, system or	
588	component to perform its safety functions. Concrete that is part of composite	
589	members and steel-plate composite (SC) structural elements is also subject to the	
590	Nuclear Specification. Safety categorization for nuclear facility steel structures and	
591	structural elements shall be the responsibility of the owner and shall be identified	
592	in the contract documents.	
593		
594	Specifically excluded from the Nuclear Specification are the pressure-retaining	
595	components, including, but not limited to, pressure vessels, valves, pumps, and	
596	piping.	
597		
598	When designing for inelastic behavior such as that caused by impact loads, the	
599	design shall follow the material requirements of Section A3 of the AISC Seismic	
600	Provisions for Structural Steel Buildings (ANSI/AISC 341), hereafter referred to	
601	as the Seismic Provisions, and the general member and connection requirements of	
602	Seismic Provisions Sections D1 and D2 for highly ductile members, respectively.	
603		
604	For a structural system or construction within the scope of the Nuclear Specification	
605	where conditions are not covered by the Nuclear Specification, it is permitted to	
606	base the adequacy of the designs on tests, analysis, or successful use, subject to the	
607	approval of the authority having jurisdiction.	
608		
609	User Note: With the exception of hollow structural sections (HSS), for the design	
610	of structural members that are cold-formed to shapes with elements not more than	
611	1 in. (25 mm) in thickness, the use of provisions of the ANSI/AISI S100 North	
011	1 m. (25 mm) in unexiless, the use of provisions of the Arton Aron Aron North	
	Specification for Safety-Related Steel Structures for Nuclear Facilities	
	Draft Dated May 2, 2024	
	AMERICAN INSTITUTE OF STEEL CONSTRUCTION	

612		American Specification for the Design of Cold-Formed Steel Structural Members
613		is recommended, incorporating the loads and load combinations delineated in
614		Section NB2.
615		
616	NA2.	REFERENCED SPECIFICATIONS, CODES, AND STANDARDS
617		
618		Add the following:
619		jg.
620		Crane Manufacturers Association of America
621		CMAA-70 Specifications for Top Running Bridge and Gantry Type Multiple
622		Girder Electric Overhead Traveling Cranes, 2020
623		Struct Electric Overhead Traveling Crunes, 2020
624		U.S. Nuclear Regulatory Commission
625		NUREG-0800 Standard Review Plan for the Review of Safety Analysis Reports for
626		Nuclear Power Plants, March 2007
627		Nuclear Tower Trans, March 2007
628		U.S. Code of Federal Regulations (CFR)
629		Title 10 of the Code of Federal Regulations, Part 50 (10CFR50), Appendix B 2019,
630		and Appendix S, 2020
631		Title 10 of the Code of Federal Regulations, Part 830, Subpart A, Quality
632		Assurance Requirements (to be used for Department of Energy Nuclear
633		Facilities), 2020
634		Title 10 of the <i>Code of Federal Regulations</i> , Part 100 (10CFR100), Reactor Site
635		Criteria, 2019
636		
637		U.S. Department of Energy (DOE)
638		DOE Order O 414.1D, <i>Quality Assurance</i> , April 2011
639		Nuclear Energy Institute (NEI)
640		NEI 07-13, Methodology for Performing Aircraft Impact Assessments for New
641		Plant Designs, Revision 8P, 2011
642		Tum Designs, Revision of , 2011
643		Add the following to (a) American Concrete Institute (ACI):
644		
645		ACI 117-10 Specification for Tolerances for Concrete Construction and Materials
646		and Commentary
647		ACI 117M-10 Specification for Tolerances for Concrete Construction and
648		Materials and Commentary (Metric)
649		indicities and commentary interior
650		Add the following to (b) American Institute of Steel Construction (AISC):
651		
652		ANSI/AISC 360-22 Specification for Structural Steel Buildings
653		Theorem is a set of the set of th
654		
655		
656		Delete the following in (b) American Institute of Steel Construction (AISC):
657		Deter the jouowing in (b) American Instance of Steel Construction (AISC).
557		

ANSI/AISC N690-18 Specification for	· Safety-Related Stee	el Structures for Nuc	lear
Facilities			

Add the following to (c) American Society of Civil Engineers (ASCE)

ANSI/ASCE 8-22 Specification for the Design of Cold-Formed Stainless Steel Structural Members

Add the following to (d) American Society of Mechanical Engineers (ASME)

- ASME NQA-1-2022 Quality Assurance Requirements for Nuclear Facility Applications, 2022
- ASME Boiler and Pressure Vessel Code Section III, Div. 1, 2023

Add the following to (f) ASTM International (ASTM):

663 664

665

666 667

668

669 670

671

672 673

674

675 676

677 678

679

680

681 682

683

684

685

686

687 688

689

690

691

692

693

694

695 696

697 698

702

703

- A106/A106M-19a Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service
- A240/A240M-23 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications
- A276/A276M-17 Standard Specification for Stainless Steel Bars and Shapes
- A312/A312M-22a Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes
- A320/A320M-22a Standard Specification for Alloy-Steel and Stainless Steel Bolting for Low-Temperature Service
- A479/A479M-23a Standard Specification for Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure Vessels
- A515/A515M-17(2022) Standard Specification for Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service
- A516/A516M-17 Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service
- A537/A537M-20 Standard Specification for Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel
- A540/A540M-15(2021) Standard Specification for Alloy-Steel Bolting Materials for Special Applications
 - A564/A564M-19a Standard Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes
 - A666-15 Standard Specification for Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate, and Flat Bar
- A738/A738M-19 Standard Specification for Pressure Vessel Plates, Heat-Treated,
 Carbon-Manganese-Silicon Steel, for Moderate and Lower Temperature
 Service
 - A1008/A1008M-21a Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with

Improved	Formability,	Required	Hardness,	Solution	Hardened,	and	Bake
Hardenab	le						

Add the following to (g) American Welding Society (AWS)

- AWS A5.4/A5.4M:2012(R2022) Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding
- AWS A5.9/A5.9M:2022 Welding Consumables-Wire Electrodes, Strip Electrodes, Wires, and Rods for Arc Welding of Stainless and Heat Resisting Steels – Classification
- AWS A5.22/A5.22M:2012 Specification for Stainless Steel Flux Cored and Metal Cored Welding Electrodes and Rods
- AWS D1.4/D1.4M:2018-AMD1 Structural Welding Code— Steel Reinforcing Bars
 - AWS D1.6/D1.6M:2017-AMD1 Structural Welding Code—Stainless Steel AWS D1.8/D1.8M:2021 Structural Welding Code—Seismic Supplement

721 NA3. MATERIAL

723 1. Structural Steel Materials

Replace section with the following:

In addition to satisfying the applicable ASTM standards, the specification of the material of those structures or structural components that are subject to impactive and/or impulsive loads shall be supplemented by the requirement that the material be subjected to Charpy V-notch (CVN) impact tests, using the procedures described in ASTM A673/A673M. The CVN impact test shall be conducted at a temperature of 0°F (-18°C). For plates and structural shapes with plate thicknesses and flange thicknesses, respectively, equal to or less than 2 in. (50 cm) and for weld metal, the acceptance criteria shall be based on energy values indicated in Table NA3.1, in addition to satisfying the applicable ASTM and AWS standard.

User Note: Higher fracture toughness is available for certain materials not produced as rolled sections, but only available as plate or bar. Where the fracture toughness of materials available in rolled shapes does not meet the requirements of Table NA3.1 at 0°F (-18°C), the component may be fabricated from plate or bar provided all requirements (CVN and others) applicable to the fabricated shape are met.

User Note: For material strengths that exceed the requirements in this section, project-specific CVN requirements will need to be established.

TABLE NA3.1

Charpy V-Notch Energy Values					
	Charpy V-Notc	h Energy Value			
Specified Minimum Yield Stress	Average of Three Specimens, Minimum	One Individual Specimen, Minimum			
36 ksi (250 MPa) up to and including 65 ksi (450 MPa)	25 ft-lb (34 J)	20 ft-lb (27 J)			
Matching 70 ksi (480 MPa) and 80 ksi (550 MPa) weld filler metal	25 ft-lb (34 J)	20 ft-lb (27 J)			

Certified material test reports (CMTR) or certified reports of tests made by the

fabricator or a testing laboratory shall verify that the material meets the CVN

requirements of Table NA3.1 and conforms with one of the ASTM standards listed

in Specification Table A3.1, subject to the grades and limitations listed.

764

765 766 767

768 769

770 771

772

773

774

775 776

777 778

779 780

781 782

783

784

1a.

Modify Table A3.1 as follows:

Listed Materials

(b) Hollow structural sections (HSS)

Add the following:

ASTM A106/A106M ASTM A312/A312M

(c) Plates

Add the following:

ASTM A240/A240M ASTM A515/A515M ASTM A516/A516M ASTM A537/A537M Class 1 and Class 2 ASTM A709/A709M ASTM A738/A738M Grades B and C

- (d) Bars
 - Add the following:

ASTM A276 ASTM A479/A479M

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 21

ILLING

785		(e) Sheets
786		
787		Add the following:
788		
789		ASTM A666
790		ASTM A1008/A1008M
791		
792		Add the following:
793		
794		For the design of structural members cold-formed to shape from annealed and cold-
795		rolled sheet, strip, plate, or flat bar stainless steels, refer to Sections 3, 4, and 5 of
796		ANSI/ASCE 8. ANSI/ASCE 8 is not applicable for hot-rolled or built-up steel
797		members, assemblies, and connections.
798		
799		User Note: For guidance regarding the design and fabrication of stainless steel
800		members, assemblies and connections, refer to ANSI/AISC 370-21, Specification
801		for Structural Stainless Steel Buildings, and AISC Design Guide 27, Structural
802		Stainless Steel. Additional requirements for stainless steel plates used in steel-plate
803		composite (SC) structural elements can be found in Appendix N9.
804		
805		User Note: Weldability should be considered when selecting material to be used in
806		welded applications, especially when selecting stainless steel.
807		
808		User Note: Materials at the interface of SC elements and elements governed by
809		ASME Boiler and Pressure Vessel Code, Section II, are to be procured using
810		ASME SA grade designations rather than the corresponding ASTM designations.
811		
812		
813	1c.	Unidentified Steel
814		
815		Replace section with the following:
816		
817		Unidentified steel shall not be used.
818	1.1	
819	1d.	Rolled Heavy Shapes
820 821		Add the following:
821		Aud the jouowing.
823		The design documents shall identify welded connections that are determined by the
823		engineer of record to be susceptible to lamellar tearing. For such connections, a
825		plan shall be developed by the engineer of record (EOR) to mitigate the conditions
825		creating the potential for lamellar tearing.
820 827		creating the potential for famenal tearing.
827		User Note: In determining the need for prefabrication inspection and the inspection
828		acceptance level, the engineer should consider the geometry of the joint, the
830		material type and grade, the anticipated quality of the material, and other experience
000		material of pe and Brade, the anterpared quarty of the material, and other experience

factors. See Chapter NN. Lamellar tearing is generally caused by the contraction of large metal deposits with high joint restraint; lamellar tears seldom result when weld sizes are less than 3/4 in. (19 mm).

835 1e. Built-Up Heavy Shapes

Add the following:

The design documents shall identify welded connections that are determined by the engineer of record to be susceptible to lamellar tearing. For such connections, a plan shall be developed by the EOR to mitigate the conditions creating the potential for lamellar tearing.

User Note: Welded joint configurations causing significant through-thickness tensile stress during fabrication, erection and/or service on plate elements of built-up heavy shapes should be avoided. However, if this type of construction is used, the designer should consider one or several of the following factors that may reduce the susceptibility of the joint to experience lamellar tearing:

- (a) Reduce the volume of weld metal to the extent practical.
- (b) Select materials that are resistant to lamellar tearing.
- (c) Perform through thickness tension testing in accordance with ASTM A770/A770M-03 (2007), Standard Specification for Through-Thickness Tension Testing of Steel Plates for Special Applications, for plates (or similar requirements for shapes).
- (d) Conduct ultrasonic examination in accordance with ASTM A577/A577M-90 (2007), Standard Specification for Ultrasonic Angle-Beam Examination of Steel Plates, or A578/A578M-07, Standard Specification for Straight-Beam Ultrasonic Examination of Plain and Clad Steel Plates for Special Applications, of the base material directly underneath the weld after completion of the welding.
- (e) Use a weld metal inlay or overlay with UT examination after the inlay or overlay but prior to making the welded joint.
- 869 3. Bolts, Washers and Nuts
 - (a) Bolts
 - Add the following:

ASTM A320/A320M ASTM A540/A540M

ASTM A564/A564M

879 5. Consumables for Welding

877

878

880

882

895

897 898

899

900 901

902 903

904

905

906

907

909

914

916

918

- 881 *Replace section with the following:*
- Filler metals and fluxes shall conform to one of the following specifications of theAmerican Welding Society:

AWS A5.23/A5.23M

AWS A5.25/A5.25M

AWS A5.26/A5.26M

AWS A5.28/ A5.28M

AWS A5.29/ A5.29M

AWS A5.32M/A5.32

- 885 AWS A5.1/ A5.1M 886 AWS A5.4/ A5.4M AWS A5.5/ A5.5M 887 888 AWS A5.9/ A5.9M 889 AWS A5.17/A5.17M 890 AWS A5.18/ A5.18M 891 AWS A5.20/A5.20M 892 AWS A5.22/A5.22M 893
- 894 CVN requirements are provided in Section NJ2.6.
- 896 6. Headed Stud Anchors

Replace section with the following:

Steel headed stud anchors shall conform to the requirements of *Structural Welding Code—Steel*, AWS D1.1/D1.1M.

User Note: Studs are typically made from cold drawn bar conforming to the requirements of ASTM A108, *Standard Specification for Steel Bars, Carbon, Cold-Finished*, standard quality, Grades 1010 through 1020, inclusive, either semi-killed or killed aluminum or silicon deoxidation.

- 908 *Add the following section:*
- 910 7. Material Certification
- 911Certified material test reports (CMTR) or certified reports of tests made by the912fabricator or a testing laboratory shall verify that the material meets the applicable913specification.

915 NA4. STRUCTURAL DESIGN DOCUMENTS AND SPECIFICATIONS

- 917 1. Structural Design Documents and Specifications Issued for Construction
- 919 *Add the following:*
- 920

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

The structural design documents and specifications shall meet the following
 requirements:

924Structural elements or systems with cyclic loads shall be so indicated as well as the925number of cycles, when applicable. Additionally, structural elements or systems926that are subject to impactive and/or impulsive loads shall be identified. The927documents for the structural elements shall identify those elements or systems that928are deemed safety-related by the engineer of record.

- 931 The structural design documents and specifications shall include:
- 933 (1) Applicable code references
- 934 (2) Material specifications
- 935 (3) Material shipping, handling and storage requirements
- 936 (4) Surface preparation and protective coating requirements
- 937 (5) Requirements for fabrication and/or erection
- 938 (6) Welding and bolting requirements
- 939 (7) Tests and inspection requirements
- 940 (8) Requirements for shop drawings
- 941 (9) Documentation and retention of records
- 942 (10) Identify CJP welds to be 100% inspected by either UT or RT.
- 943 944 945

929 930

932

944 Add the following section:

946 NA6. QUALITY ASSURANCE947

948A quality assurance program covering safety-related steel structures shall be949developed prior to design or construction, as applicable. The general requirements950and guidelines for establishing and executing the quality assurance program during951the design and construction phases of nuclear facilities shall be those established by95210CFR50, Appendix B (for Nuclear Power Stations) and in 10CFR830, Subpart A953and DOE Order O 414.1D (for DOE Nuclear Facilities). Additional quality assurance954requirements shall meet the requirements of Chapter NN.

Analysis and design calculations shall be documented and shall include a statement
of the applicable design criteria. Calculations shall be performed in accordance
with ASME NQA-1, Requirement 3, "Design Control," or other applicable
standards approved by the authority having jurisdiction (AHJ). Activities involving
specifications, analyses, designs, calculations, documentation, fabrication, and
erection shall be subject to quality assurance requirements. Computer programs
used in analysis and design shall likewise be covered by a quality assurance

program, as provided by ASME NQA-1, Subpart 2.7, "Quality Assurance Requirements for Computer Software for Nuclear Facility Applications."

User Note: 10CFR50, Appendix B, and 10CFR830, Subpart A, provide regulations for quality assurance (QA) and quality control (QC). Both these documents defer many requirements to ASME NQA-1. The requirements of Chapter NN are aimed to further assist the user in developing a QA/QC program that will satisfy these regulations for safety-related structural steel, composite, and steel-plate composite (SC) structures.

It is noted that the Nuclear Specification uses the term "safety-related" as being applicable to both commercial nuclear safety related structures as well as "safetyclass" structures (as defined in the pertinent DOE documents). However, for both types of facilities, the engineer of record may elect to apply the associated design and quality assurance requirements to less safety-critical structures (e.g., certain important-to-safety or Risk Informed Safety Class structures in commercial nuclear power plants and safety-significant structures in DOE nuclear facilities).

> Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

CHAPTER NB

DESIGN REQUIREMENTS

991 Modify Chapter B of the Specification as follows.

993 *Replace preamble with the following:*

986 987

988 989 990

992

994

997

1011

1012

1013

1014 1015

1016

1018 1019

1020

1021

1022

1023 1024

1028

1030

This chapter addresses general requirements for the analysis and design of steel structuresapplicable to all chapters of the Nuclear Specification.

998 The chapter is organized as follows: 999

1000 NB1. General Provision

- 1001 NB2. Loads and Load Combinations
- 1002 NB3. Design Basis
- 1003 NB4. Member Properties
- 1004 NB5. Fabrication and Erection
- 1005NB6. Quality Control and Quality Assurance1006NB7. Evaluation of Existing Structures
- 1006NB7. Evaluation of Existing Struct1007NB8. Dimensional Tolerances
- 1007 NB8. Dimensional Tolerances 1008

1009 NB2. LOADS AND LOAD COMBINATIONS 1010

Replace section with the following:

Safety-related steel structures for nuclear facilities shall be designed using the normal loads, severe environmental loads, extreme environmental loads, abnormal loads, and load combinations of this section.

1017 1. Normal Loads

Normal loads are those loads that are encountered during normal plant start-up, operation and shutdown, and include:

- D = dead loads due to the weight of the structural elements, fixed-position equipment, and other permanent appurtenant items; weight of crane trolley and bridge
- 1025C= rated capacity of crane (shall include the maximum wheel loads of the crane1026and the vertical, lateral and longitudinal forces induced by the moving crane)1027F= loads due to weight and pressures of fluids with well-defined densities and
 - F = loads due to weight and pressures of fluids with well-defined densities and controllable maximum heights
- 1029 H = loads due to weight and pressure of soil, water in soil, or bulk materials
 - L = live load due to occupancy and moveable equipment, including impact
- 1031 $L_r = \text{roof live load}$

1032 1033		R = rain load $R_o = pipe reactions during normal operating, start-up, or shutdown conditions,$
1034		based on the most critical transient or steady-state condition
1035		S = snow load
1036		T_o = thermal effects and loads during normal operating, start-up, or shutdown
1037		conditions, based on the most critical transient or steady-state condition
1038		
1039		Snow loads shall be as stipulated in Minimum Design Loads and Associated
1040		Criteria for Buildings and Other Structures (ASCE/SEI 7) for Risk Category IV
1041		facilities.
1042		
1043	2.	Severe Environmental Loads
1044		
1045		Severe environmental loads are those loads that may be encountered infrequently
1046		during the service life, and include:
1047		
1048		$E_o =$ loads generated by the operating basis earthquake (OBE)
1049		
1050		W = wind load
1051		
1052		Operating basis earthquake loads shall be as defined in 10CFR50, Appendix S, or
1053		as specified by the AHJ. Wind loads shall be as stipulated in ASCE/SEI 7 for Risk
1054		Category IV facilities, or as specified by the AHJ.
1055		
1056		User Note: The OBE is an earthquake that could reasonably be expected to occur
1057		at the plant site during the operating life of the plant considering the regional and
1058		local geology, and seismology and specific characteristics of local subsurface
1059		material. It is that earthquake that produces the vibratory ground motion for which
1060		the features of the nuclear power plant necessary for continued operation without
1061		undue risk to the health and safety of the public are designed to remain functional.
1062		
1063	-	
1064	3.	Extreme Environmental Loads
1065		
1066		Extreme environmental loads are those loads that are highly improbable but are
1067		used as a design basis, and include the following:
1068		
1069		E_s = loads generated by the safe shutdown earthquake (SSE), or design basis
1070		earthquake (DBE)
1071 1072		W_t = loads generated by the specified design (basis) tornado, including wind
1072		w_t – loads generated by the spectric design (basis) tomado, including wind pressures, pressure differentials, and tornado-borne missiles
1075		pressures, pressure unicientiais, and tomado-oome missines
1074		Safe shutdown earthquake loads shall be as defined in 10CFR50, Appendix S, or as
1075		specified by the AHJ. Tornado-based loads shall be as defined in the U.S. Nuclear
1070		specified of the ratio. Forhado-based foads sharf be as defined in the 0.5. Nuclear

1077 1078		Regulatory Commission Standard Review Plan Section 3.3.2 (NUREC specified by the AHJ.	G-0800) or as		
1079 1080 1081	4.	Abnormal Loads			
1081 1082 1083 1084		Abnormal loads are those loads generated by a postulated high-energ accident used as a design basis, and include:	gy pipe break	~	
1085 1086 1087		P_a = maximum differential pressure load generated by the postulated R_a = pipe and equipment reactions generated by the postulat including R_o		$\langle \rangle$	2
1088 1089 1090 1091		T_a = thermal loads generated by the postulated accident, including T_{ij} = jet impingement load generated by the postulated accident Y_m = missile impact load, such as pipe whip generated by or during the accident	he postulated		2
1092 1093 1094		Y_r = loads on the structure generated by the reaction of the broken pipe during the postulated accident	high-energy		2
1094	5.	Load and Resistance Factor Design (LRFD)	0		
1096 1097 1098		The design strength, ϕR_n , of each structural component shall be equal than the required strength, R_u , determined from the applicable critical of			
1098 1099 1100		of the loads. The possibility of one or more loads not acting concurrence considered when determining the load combination(s) that produce the	ently shall be		
1101 1102 1103		structural effects. The load combinations specified in this section investigated.			
1104 1105 1106 1107 1108		User Note: The above provision regarding situations when one or mo not be acting concurrently is particularly relevant to various "abnorm the tornado load effects (i.e., for load combinations listed under Sect This is explained further in the Commentary.	al loads" and		
1109 1110 1111	5a.	Normal Load Combinations			
1112 1113		$1.4(D + R_o + F) + T_o + C$ $1.2(D + R_o + F) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R) + 1.2T_o + 1.4C$	(NB2-1) (NB2-2)		
1114		$1.2(D + R_o + F) + 1.6(L_r \text{ or } S \text{ or } R) + 0.8(L + H) + 1.2T_o + 1.4C$	(NB2-3)		
1115 1116 1117	5b.	Severe Environmental Load Combinations			
1118		$1.2(D+F+R_o)+W+0.8L+1.6H+0.5(L_r \text{ or } S \text{ or } R)+T_o+C$	(NB2-4)		
1119		$1.2(D+F+R_o)+1.6E_o+0.8L+1.6H+0.2(L_r \text{ or } S \text{ or } R)+T_o+C$	(NB2-5)		
1120	~				
1121	5c.	Extreme Environmental and Abnormal Load Combinations Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION			

1122		
1123	$D + 0.8L + C + T_o + R_o + E_s + F + H$	(NB2-6)
1124	$D + 0.8L + T_o + R_o + W_t + F + H$	(NB2-7)
1125	$D + 0.8L + C + 1.2P_a + R_a + T_a + F + H$	(NB2-8)
1126	$D + 0.8L + (P_a + R_a + T_a) + (Y_r + Y_j + Y_m) + 0.7E_s + F + H$	(NB2-9)

1128 5d. **Other Considerations**

1129

1130

1131

1132

1133 1134

1135

1136 1137

1138

1139

1140

1141

1142

1143 1144

1145 1146

1147 1148

1149

1150

1151

1152 1153

1154

1155

1156

1157 1158 1159

1160 1161

1162

1163 1164

1165

1166

1167

The following additional requirements shall be considered in the loads and load combinations:

(1) In applying T_o and T_a , the thermal gradient and structural restraint effects shall be considered.

User Note: The action of T_a can lead to large member forces due to external or internal restraints. An effective way to minimize the effect of T_a is to incorporate design features that help accommodate thermal deformations (e.g., by using connections with long-slotted holes in the direction of thermal movement, partially restrained connections, expansion joints). Structural analysis including design for T_a should account for the presence of such features. See the Commentary for additional guidance regarding analysis of load effects due to T_a including benefits of using the direct analysis method described in Chapter C of the Specification.

- (2) Where the structural effect of differential settlement is significant, it shall be included with the soil pressure load.
- (3) Where required, loads due to fluids with well-defined pressures shall be treated as dead loads, and loads due to lateral earth pressure, ground water pressure, or pressure of bulk materials shall be treated as live loads.
- (4) If the dead load acts to stabilize the structure against the destabilizing effects of lateral force or uplift, the load factor on dead load shall be 0.90 of the assigned factor, and that on other gravity loads (L, L_r, S, C) shall be zero provided the load does not contribute to the destabilizing effect. F shall be treated in the same manner as D, and H shall be treated in the same manner as L when stability evaluations are performed.
- (5) If the OBE is not part of the design basis, Load Combination NB2-5 need not be evaluated.
- (6) In Load Combinations NB2-8 and NB2-9, the maximum values of P_a , R_a , T_a , Y_r , Y_i , and Y_m , and including an appropriate dynamic load factor, shall be used unless a time-history analysis is performed to justify otherwise. In Load Combination NB2-9, the required strength criteria shall first be satisfied without Y_r , Y_i , and Y_m . In Load Combinations NB2-7 through NB2-9, when including concentrated loads, Y_i , Y_r , and Y_m , or tornado-borne missiles, local Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

30

1168		section strength is permitted to be exceeded, as per Section NB3	.14, provided		
1169		that there is no loss of function of any safety-related system.			
1170					
1171		(7) In addition to the abnormal loads, hydrodynamic loads resulting fi			
1172		coolant accident (LOCA) and/or safety relief valve actuation	ion shall be		
1173		considered for steel structure components subjected to these load			
1174		structure interaction associated with these hydrodynamic loads an			
1175		the postulated seismic loads shall be taken into account.			
1176					
1177		(8) In Load Combination NB2-6, the load C is permitted to be waive			
1178		can be demonstrated that the probability of E_s and C occurring at t			
1179		is less than 1×10^{-6} .			
1180					
1181	6.	Allowable Strength Design (ASD)			
1182				1.	
1183		The allowable strength, R_n/Ω , of each structural component shall b			
1184		greater than the required strength, R_a , determined from the critical con-			
1185		the loads. The possibility of one or more loads not acting concurre		*	
1186		considered when determining the load combination(s) that produce the			
1187		structural effects. The load combinations specified in this sect	ion shall be		
1188		investigated.			
1189 1190					
1190		User Note: The above provision regarding situations when one or monot be acting concurrently is particularly relevant to various "abnorm			
1191		the tornado load effects (i.e., for load combinations listed under Sect			
1192		This is explained further in the Commentary.	non ND2.00).		
1194		This is explained further in the commentary.			
1195					
1196					
1197	6a.	Normal Load Combinations			
1198					
1199		$D + L + R_o + F + H + T_o + C$	(NB2-10)		
1200		$D + (L_r \text{ or } S \text{ or } R) + R_o + F + H + T_o + C$	(NB2-11)		
			, í		
1201		$D + F + 0.75L + 0.75H + 0.75(L_r \text{ or } S \text{ or } R) + T_o + C$	(NB2-12)		
1202		X Chi			
1203	6b.	Severe Environmental Load Combinations			
1204					
1205		$D + R_o + F + 0.6W + 0.75(L + H) + C + 0.75(L_r \text{ or } S \text{ or } R) + T_o$	(NB2-13)		
1206		$D + R_o + F + E_o + 0.75(L + H) + C + 0.75(L_r \text{ or } S \text{ or } R) + T_o$	(NB2-14)		
1207					
1208	6c.	Extreme Environmental and Abnormal Load Combinations			
1209					
1210		$D + L + C + R_o + T_o + E_s + F + H$	(NB2-15)		
1211		$D + L + R_o + T_o + W_t + F + H$	(NB2-16)		
1212		$D + L + C + P_a + R_a + T_a + F + H$	(NB2-17)		
		Specification for Safety-Related Steel Structures for Nuclear Facilities			
		Draft Dated May 2, 2024			
		AMERICAN INSTITUTE OF STEEL CONSTRUCTION			

1213
$$D+L+P_a+R_a+T_a+Y_r+Y_j+Y_m+0.7E_s+F+H$$
 (NB2-18)

6d. Other Considerations

 The following additional requirements shall be considered in the loads and load combinations:

(1) In applying T_o and T_a , the thermal gradient and structural restraint effects shall be considered.

User Note: The action of T_a can lead to large member forces due to external or internal restraints. An effective way to minimize the effect of T_a is to incorporate design features that help accommodate thermal deformations (e.g., by using connections with long-slotted holes in the direction of thermal movement, partially restrained connections, expansion joints). Structural analysis including design for T_a should account for the presence of such features. See the Commentary for additional guidance regarding analysis of load effects due to T_a including benefits of using the direct analysis method described in Chapter C of the Specification.

- (2) Where the structural effect of differential settlement is significant, it shall be included with the soil pressure load.
- (3) Where required, loads due to fluids with well-defined pressures shall be treated as dead loads, and loads due to lateral earth pressure, ground water pressure, or pressure of bulk materials shall be treated as live loads.
- (4) If the dead load acts to stabilize the structure against the destabilizing effects of lateral force or uplift, the load factor on dead load shall be 0.60 and other gravity loads (L, L_r, S, C) shall be assumed to equal zero provided the load does not contribute to the destabilizing effect. *F* shall be treated in the same manner as *D*, and *H* shall be treated in the same manner as *L* when stability evaluations are performed.
- (5) If the OBE is not part of the design basis, Load Combination NB2-14 need not be evaluated.
- (6) In Load Combinations NB2-17 and NB2-18, the maximum values of P_a , R_a , T_a , Y_r , Y_j , and Y_m , including an appropriate dynamic load factor, shall be used unless a time-history analysis is performed to justify otherwise. In Load Combination NB2-18, the required strength criteria shall be first satisfied without Y_j , Y_r , and Y_m . In Load Combinations NB2-16 through NB2-18, when including concentrated loads Y_j , Y_r , and Y_m or tornado-borne missiles, local section strength is permitted to be exceeded as per Section NB3.14, provided that there is no loss of function of any safety-related system.
- (7) In addition to the abnormal loads, hydrodynamic loads resulting from LOCA and/or safety relief valve actuation shall be appropriately considered for steel structure components subjected to these loads. Any fluid structure interaction associated with these hydrodynamic loads and those from the postulated seismic loads shall be taken into account.

time is less than 1×10⁻⁶.
NB3. DESIGN BASIS
Add the following:
Buildings and other structures designed by the Nuclear Specification shall be designed using the provisions of either Section NB2.5 (LRFD) or Section NB2.6 (ASD) exclusively throughout the structure.
2. Design for Strength Using Allowable Strength Design (ASD)
Add the following:
It is permitted to multiply the allowable strength by the coefficients stipulated in Section NB2.6d(8).

(8) For Load Combinations NB2-15 through NB2-18, it is permitted to increase the allowable strength by 1.6. However, this increase shall be limited to 1.5 for

(9) In Load Combination NB2-15, the load C is permitted to be waived, provided

it can be demonstrated that the probability of E_s and C occurring at the same

members or fasteners in axial tension or in shear.

3. Required Strength

Replace section with the following:

1285The required strength of structural members and connections shall be determined1286by structural analysis for the applicable load combinations stipulated in Section1287NB2.

1288Design by elastic, inelastic or plastic analysis is permitted. Provisions for inelastic1289and plastic analysis are as stipulated in Appendix N1, Section N1.3, Design by1290Inelastic Analysis.

1291The yield stress, modulus of elasticity, and proportional limit of carbon steel shall1292be investigated and reduced, as appropriate, for temperatures in excess of 250°F1293(120°C).

1296 8. Design for Serviceability

Add the following:

The effect of elevated temperature on stiffness shall be considered, where applicable, in calculating structural deformation under operating conditions.

1303 Add the following section: 1304 1305 1306 14. Analysis, Design, and Detailing for Impulsive and Impactive Loads 1307 1308 The analysis, design, and detailing of structural steel, composite members, and SC 1309 structural elements subjected to impulsive and impactive loads shall be evaluated 1310 in accordance with Appendix N10. 1311 1312 **NB5. FABRICATION AND ERECTION** 1313 1314 Replace section with the following: 1315 1316 Fabrication documents, fabrication, shop painting, erection documents, erection, 1317 and quality control shall meet the requirements in Chapter NM, Fabrication and 1318 Erection. 1319 NB6. QUALITY CONTROL AND QUALITY ASSURANCE 1320 1321 Replace section with the following: 1322 1323 1324 Quality control and quality assurance activities shall satisfy the requirements 1325 stipulated in Section NA6, Quality Assurance, and Chapter NN, Quality Control 1326 and Quality Assurance. 1327 NB7. EVALUATION OF EXISTING STRUCTURES 1328 1329 Replace section with the following: 1330 1331 Provisions for the evaluation of existing structures shall conform to the 1332 1333 requirements of Appendix N5, Evaluation of Existing Structures.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1334

CHAPTER NC

DESIGN FOR STABILITY

1339 Modify Chapter C of the Specification as follows.

1341 Add the following to the end of the first paragraph of Section C1:

1343The effects of elevated temperatures on the stability of the structure and its elements shall1344be considered.

1345Replace the User Note in Section C2.2 with the following:1346

1347 User Note: The imperfections required to be considered in this section are imperfections 1348 in the locations of points of intersection of members (system imperfections). In typical 1349 building structures, the system imperfection is the out-of-plumbness of columns. For 1350 structures that do not fit the construct of a typical building (e.g., structural elements supporting mechanical and electrical components), the notional loads defined in Section 1351 1352 C2.2b of the Specification are not always applicable and initial imperfections should be 1353 applied per Section C2.2a. Consideration of initial out-of-straightness of individual 1354 members (member imperfections) is not required in the structural analysis when using the 1355 provisions of this section; it is accounted for in the compression member design provisions 1356 of Chapter E of the Specification and need not be considered explicitly in the analysis as 1357 long as it is within the limits specified in the Code of Standard Practice. Specification Appendix 1, Section 1.2, provides an extension to the direct analysis method that includes 1358 1359 modeling of member imperfections (initial out-of-straightness) within the structural 1360 analysis. 1361

1362 Replace the User Note in Section C2.2a with the following:

User Note: Initial displacements similar in configuration to both displacements due to 1364 1365 loading and anticipated buckling modes should be considered in the modeling of 1366 imperfections. The magnitude of the initial displacements should be based on permissible construction tolerances, as specified in the Code of Standard Practice or other governing 1367 1368 requirements, or on actual imperfections, if known. The direct application of these imperfections is intended to contribute to the destabilizing effects of the loads, i.e., P- Δ 1369 and P- δ , but is not intended to directly contribute to the imposed stresses due to support 1370 1371 displacements. 1372

1373

1363

1335 1336

1337 1338

1340

1342

CHAPTER ND

DESIGN OF MEMBERS FOR TENSION

- 1375 1376 1377 No changes to Chapter D of the Specification. 1378
- 1379

1374

- 1380
- 1381

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Jr B

U KER

36

JEW LING

CHAPTER NE

DESIGN OF MEMBERS FOR COMPRESSION

1383 1384 1385

13851386 No changes to Chapter E of the Specification.

1387

1382

- 1388
- 1389

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Ur M

UKER I

37

JEW JUNE

CHAPTER NF

DESIGN OF MEMBERS FOR FLEXURE

13931394 No changes to Chapter F of the Specification.

1395

1390 1391

1392

- 1396
- 1397

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

5

38

JEW

CHAPTER NG

DESIGN OF MEMBERS FOR SHEAR

- 1399 1400 1401 1402 No changes to Chapter G of the Specification.
- 1403 1404

1398

1405

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Ur B

JEW LING

CHAPTER NH

1408 DESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION

1410 No changes to Chapter H of the Specification.

1411

1406 1407

- 1412
- 1413

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

U AY

40

IL-ILING

1 .	CHAPTER NI	
414		
1415	DESIGN OF COMPOSITE MEMBERS	
l416 l417	DESIGN OF COMPOSITE MEMBERS	
1417		
419	Add the following after the first paragraph of the preamble to Chapter I.	
420	Aud the jouowing after the just paragraph of the preamble to Chapter 1.	
421	The applicability of the requirements for composite plate shear walls shall be limited to	
422	standalone shear walls.	
423		X
1424	User Note: Typical safety-related nuclear facilities involve a labyrinthine grid of squat,	
425	shear-controlled steel-plate composite (SC) walls. Such shear-controlled walls are to be	
1426	designed per Appendix N9. However, in some situations, certain nuclear facilities may	
1427	involve tall, flexure-controlled standalone SC walls. Such flexure-controlled walls are to	
428	be designed using the provisions of this Chapter.	
1429		
1430	Modify Chapter I of the Specification as follows.	
1431 1432	In Section 11.1. nonlage "Puilding Code Description out for Structural Connects and	
1432	In Section 11.1, replace "Building Code Requirements for Structural Concrete and Commentary (ACI 318) and the Metric Building Code Requirements for Structural	
1435	Commentary (ACI 318) and the Metric Building Code Requirements for Structural Concrete and Commentary (ACI 318M)" with "Code Requirements for Nuclear Safety-	
1435	Related Concrete Structures and Commentary (ACI 349) and the Code Requirements for	
1436	Nuclear Safety-Related Concrete Structures and Commentary (Metric) (ACI 349M)".	
1437	nucleur sujely helated concrete su delares and commentary (neuro) (helate) (i.e.	
438	For all instances in Chapter I, replace "ACI 318" with "ACI 349 or ACI 349M" and	
1439	replace "ACI 318 Chapter 17" with "ACI 349 or ACI 349M, Appendix D."	
440		
1441		
1442		
1443	Delete the following from Section I.1.3(a): "and not less than 3 ksi (21 MPa) nor more	
444	than 6 ksi (41 MPa) for lightweight concrete."	
445		
446	Add the following to the end of Section 11.3(a): "Lightweight concrete shall not be used."	
1447	2 mil	
	No.	

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

CHAPTER NJ 1448 **DESIGN OF CONNECTIONS** 1449 1450 Modify Chapter J of the Specification as follows. 1451 1452 1453 NJ1. GENERAL PROVISIONS 1454 1455 Modify section as follows. 1456 1457 Replace Section J1.9 with the following: 1458 Welded Alterations to Structures with Existing Rivets or Bolts 1459 9. 1460 1461 The use of the combined strength of existing rivets or bolts and welds on a common 1462 faying surface shall not be permitted. 1463 Replace Section J1.10 with the following: 1464 1465 10. High-Strength Bolts in Combination with Existing Rivets 1466 1467 The use of the combined strength of existing rivets and high-strength bolts on a 1468 common faying surface shall not be permitted. 1469 1470 1471 NJ2. WELDS AND WELDED JOINTS 1472 1473 1474 Modify section as follows. 1475 1476 6. **Filler Metal Requirements** 1477 Replace second paragraph with the following: 1478 1479 Filler metal with a specified minimum Charpy V-notch (CVN) toughness of 20 ft-1480 lb (27 J) at a temperature of 40°F (4°C) or lower shall be used in the following 1481 1482 joints: 1483 (a) Complete-joint-penetration (CJP) groove welded T- and corner joints with 1484 1485 steel backing left in place when the joint is subjected to tension normal to the 1486 effective area of the weld, unless the joint is designed using the available strength for a partial-joint-penetration groove weld. 1487 1488 (b) CJP groove welded splices subject to tension normal to the effective area in 1489 heavy sections as defined in Specification Sections A3.1d and A3.1e. 1490 1491

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

NJ3. BOLTS, THREADED PARTS, AND BOLTED CONNECTIONS

Welds subject to impactive and/or impulsive loads shall be made with filler metals

meeting the requirements specified in AWS D1.8/D1.8M, clauses 6.1, 6.2, and 6.3.

Modify section as follows.

1499 2. High-Strength Bolts

Add the following to paragraph (b):

(4) Connections for supports of running machinery, or of other live loads that produce
 impact or reversal of stress

1507 (5) Other connections stipulated on the design documents

Add the following to paragraph (c):

1511 (3) For supports of vibrating machinery and other situations where high-cycle fatigue is a
1512 design concern
1513

User Note: See Appendix N3 for design of joints subject to high-cycle fatigue.

1517 11. Bearing and Tearout Strength at Bolt Holes1518

Replace paragraph (a) of Section J3.11a(1) with the following:

(a) Bearing

 $R_n = 2.4 dt F_u \tag{J3-6a}$

Replace paragraph (b) of Section J3.11a(1) with the following: (b) Tearout

 $R_n = 1.2l_c t F_u \tag{J3-6c}$

Replace paragraph (i) of Section J3.11b(2) with the following:

(i) For a bolt in a connection with a standard hole or a short-slotted hole with the slot perpendicular to the direction of force

$$R_n = 1.2l_c t F_u \tag{J3-6g}$$

User Note: Deformation at bolt holes is always a design consideration in nuclear facilities.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1539 *Add the following new section:*

1540

1541 14. Connections for Members Subject to Impactive or Impulsive Loads1542

1543Bolted connections for members that are subject to impactive or impulsive loads shall1544be configured such that a ductile limit state controls the connection design.

- 1545
- 1546

1547

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

44

IL IINC

CHAPTER NK

ADDITIONAL REQUIREMENTS FOR HSS AND BOX-SECTION CONNECTIONS

15531554 No changes to Chapter K of the Specification.

1555 1556

1548 1549

1550

1551 1552

1557

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

5

45

REVIEW PRAN

CHAPTER NL

1559		
1560	DESIGN FOR SERVICEABILITY	
1561		
1562		
1563	Modify Chapter L of the Specification as follows.	
1564		
1565	Replace preamble with the following:	
1566		C OV
1567	This chapter addresses serviceability design requirements.	X
1568		
1569	The chapter is organized as follows:	
1570	NL1. General Provisions	
1571	NL2. Deflections	A
1572	NL3. Drift	
1573	NL4. Vibration	
1574	NL5. Wind-Induced Motion	
1575	NL6. Thermal Expansion and Contraction	
1576	NL7. Connection Slip	
1577		
1578	NL1. GENERAL PROVISIONS	
1579		
1580	Replace section with the following:	
1581		
1582	Serviceability of a nuclear plant structure is a state in which the function of a	
1583	structure, its maintainability, durability, and the ability of safety-related systems	
1584	and components to perform their intended design function are preserved under	
1585	various loading conditions. Limiting values of structural behavior for serviceability	
1586	(for example, maximum deflections or accelerations) shall be chosen by the	
1587	engineer of record with due regard to the intended safety-related function of the	
1588	structure. Serviceability shall be evaluated using applicable load combinations	
1589 1590	stipulated in Section NB2 and the applicable Appendices.	
1591		
1592	User Note:	
1593		
1594	Reduced stiffness values used in the direct analysis method, described in Chapter	
1595	C of the Specification, are not intended for use with the provisions of this chapter.	
1596	However, Section NB3.8 does require that stiffness reduction due to elevated	

- temperatures be considered for serviceability.
- 1598

1597

1558

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

46

CHAPTER NM

47

1600		FABRICATION AND ERECTION
1601		
1602	Modif	y Chapter M of the Specification as follows.
1603		
1604	NM1.	FABRICATION AND ERECTION DOCUMENTS
1605		
1606		Replace section with the following:
1607		
1608		Fabrication and erection documents are permitted to be prepared in stages.
1609		Fabrication documents shall be prepared in advance of fabrication and give
1610		complete information necessary for the fabrication of the component parts of the
1611		structure, including the location, type, and size of welds and bolts. Erection
1612		documents shall be prepared in advance of erection and give information necessary
1613		for erection of the structure. Fabrication and erection documents shall clearly
1614		distinguish between shop and field welds and between shop and field bolts, and
1615		shall clearly identify pretensioned and slip-critical high-strength bolted
1616		connections.
1617		
1618		Unless otherwise noted in the contract documents, a response to a request for
1619		information, as defined in Section 4.6 of the Code of Standard Practice, shall
1620		constitute design direction and a release for construction.
1621 1622		Echnication and exection decomposite shall have a means of indicating which parts
1622		Fabrication and erection documents shall have a means of indicating which parts
1623		are safety-related.
1624	NM2	FABRICATION
1625	1 (1)12.	
1627	1.	Cambering, Curving, and Straightening
1628		ownistring, our mig, and stringtering
1629		Modify section to read as follows:
1630		
1631		Local application of heat or mechanical means is permitted to be used to introduce
1632		or correct camber, curvature, and straightness. The temperature of heated areas
1633		shall not exceed the lesser of the maximum specified in the applicable ASTM
1634		standard or 1,200°F (650°C) for carbon steels. For ASTM A514/A514M and
1635		ASTM A709/A709M Grade 70, the temperature of heated areas shall not exceed
1636		1,100°F (590°C). The temperature of heated areas for ferritic, martensitic, or duplex
1637		stainless steels shall not exceed 600°F (320°C). The temperature of heated areas for
1638		austenitic stainless steel shall not exceed 800°F (430°C). The temperature of heated
1639		areas for precipitation hardening stainless steel shall not exceed the ageing
1640		temperature. Subject to the approval of the EOR, alternative temperature limitations

are permitted to be used based on recommendations by the material producer.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1599

1641

1644 2. Thermal Cutting

1645

1647

1660 1661

1662

1669

1671

1672

1673 1674

1678

1681

1646 *Modify first paragraph to read as follows:*

1648 Thermally cut edges shall meet the requirements of AWS D1.1/D1.1M, clauses 1649 7.14.5.2, 7.14.8.3, and 7.14.8.4 with the exception that thermally cut free edges 1650 that will not be subject to fatigue shall be free of sharp V-shaped notches and 1651 gouges greater than 3/16 in. (5 mm) in depth. Gouges deeper than 3/16 in. (5 mm) 1652 and notches shall be removed by grinding or repaired by welding. Notches or 1653 gouges deeper than 3/16 in. (5 mm) and up to 3/8 in. (10 mm) that remain from cutting shall be removed by grinding at a slope not greater than 1:2.5. Notches or 1654 gouges 3/8 in. (10 mm) deep or greater shall be repaired only with the approval of 1655 1656 the engineer of record. Oxygen gouging is not permitted on quenched and tempered 1657 steels. 1658

1659 **3.** Planing of Edges

Replace section with the following:

1663Planing or finishing of sheared or thermally cut edges of plates or shapes is not required1664unless specifically called for in the construction documents or included in a1665stipulated edge preparation for welding. Planed or finished edges shall not vary by1666more than 1/8 in. (3 mm) from a true plane.

1668 4. Welded Construction

1670 **Replace section with the following:**

Welding shall be performed in accordance with AWS D1.1/D1.1M and AWS D1.6/D1.6M except as modified in Section NJ2.

- 1675 User Note: Welder qualification tests on plate defined in AWS D1.1/D1.1M, clause
 1676 10, and AWS D1.6/D1.6M, clause 6, are appropriate for welds connecting plates,
 1677 shapes, or HSS to other plates, shapes, or rectangular HSS.
- 1679The 6GR tubular welder qualification shall be required for unbacked complete-1680joint-penetration groove welds of HSS T-, Y- and K-connections.
- 1682When the elements of a steel-plate composite (SC) structural element are welded1683to Class MC components in accordance with ASME Boiler and Pressure Vessel1684Code, Section III, Class NE, the requirements of Subsection NE shall govern the1685weld at the interface.
- Welds on safety-related material shall be uniquely identified and shall be uniquelytraceable.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1688User Note: Parameters documented and retrievable for each weld include, but are1689not limited to, the welder, weld wire lot/filler metal used, equipment used, date the1690weld was performed, date the weld was inspected, identification of weld inspector,1691and weld WPS used. The fabricator or constructor, as applicable for the work scope,1692should develop a method whereby each weld and its associated data can be1693identified.

1694 7. Dimensional Tolerances

Replace section with the following:

Dimensional tolerances shall be in accordance with *Code of Standard Practice*, Section 11, and as listed in the following.

For acceptable tolerances not found in the *Code of Standard Practice* or not listed in the following, the engineer of record shall provide the necessary tolerances.

(a) Holes

A variation from the detailed distance of 1/16 in. (2 mm) center-to-center of holes is permissible for members 30 ft (9 m) or less in length and 1/8 in. (3 mm) for members over 30 ft (9 m) in length.

In compression members, erection holes or holes mispunched or misdrilled are permitted to be left unfilled provided the net area is not less than 0.85 times the gross area. In tension members, holes are permitted to be left unfilled provided the net area requirements are met. In either condition, the unfilled holes shall not violate the minimum hole spacing requirements of *Specification* Section J3.4.

(b) Stiffeners

Stiffeners serving as connections shall be located within 1/4 in. (6 mm) of the detailed position. A variation of 1 in. (25 mm) is permissible for the location of other stiffeners, except bearing stiffeners, which shall be within one-half of their thickness from the detailed position.

(c) Welding The fabrication tolerance of welded structural members shall conform to the provisions of AWS D1.1/D1.1M or AWS D1.6/D1.6M, as applicable.

(d) Steel-Plate Composite (SC) Structural Elements

Dimensional tolerances of SC structural elements as measured in the fabrication shop shall be as follows:

(1) At tie locations, the perpendicular distance between the opposite faceplates are within plus or minus $t_{sc}/200$, rounded upward to the nearest

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1731	$1/16$ in. (2 mm), where t_{sc} is the SC section thickness. This tolerance	
1732	check shall be performed for the row of ties located closest to the free	
1733	edges of SC panels.	
1734		
1735	(2) In between the tie locations, the perpendicular distance between the	
1736	opposite faceplates are within plus or minus $t_{sc}/100$, rounded upward to	
1737	the nearest 1/16 in. (2 mm). This tolerance check shall be performed	
1738	along the free edges of the SC structural elements.	
1739		
1740	(3) The tie locations (tie spacing) conform to the shear connector provisions	
1741	of AWS D1.1/D1.1M or AWS D1.6/D1.6M, as applicable.	
1742		
1743	(4) The squareness and the skewed alignment of opposite faceplates are such	A
1744	that the applicable dimensional tolerances for making the connections	
1745	between adjacent panels, sub-modules, or modules are met. No	
1746	additional squareness or skewed alignment tolerances are required.	
1747		
1748	User Note: Items (1) and (2) also define the tolerance for tie length relative to	
1749	the SC section thickness. The tolerance for individual tie components (i.e., parts	
1750	that make up the tie) should be based on the Code of Standard Practice, provided	
1751	that the overall tolerance requirements (1) and (2) are satisfied.	
1752		
1753	Dimensional tolerances for fit-up of adjoining panels, sub-modules, or modules,	
1754	as measured before making connections between faceplates of these panels, sub-	
1755	modules, or modules shall be as follows:	
1756		
1757	(1) The fit-up tolerance of faceplates of adjoining SC structural elements, sub-	
1758	modules, or modules joined together by welding shall be governed by the	
1759	tolerances in AWS D1.1/D1.1M, AWS D1.4/D1.4M, or AWS D1.6/D1.6M,	
1760	as applicable.	
1761		
1762	(2) The fit-up tolerance of faceplates of adjoining panels, sub-modules, or	
1763	modules joined together by bolting shall be governed by the applicable	
1764	requirements of the Code of Standard Practice.	
1765		
1766	User Note: These dimensional tolerances for fit-up of adjoining panels, sub-	
1767	modules, or modules are to be checked before making the connections, i.e., at	
1768	the fabrication yard or at the site, depending on the construction sequence. The	
1769	engineer of record may specify additional dimensional tolerances in the contract	
1770	documents for the fabrication of panels to achieve the dimensional tolerances for	
1771	fit-up of faceplates of adjoining panels, sub-modules, or modules.	
	Specification for Safety-Related Steel Structures for Nuclear Facilities	
	Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION	
	AWERICAN INSTITUTE OF STEEL CONSTRUCTION	

1772		
1773		Before concrete is placed, the dimensional tolerances for erected modules shall be
1774		governed by the erection tolerances defined in the Code of Standard Practice,
1775		Section 7.13, with the exception that the working lines will be located at one
1776		faceplate of the SC structural element.
1		
1777		Dimensional tolerances for SC structural elements after concrete curing shall be
1778		governed by the concrete construction tolerances defined in ACI 349 or ACI 349M
1779		and ACI 117 or ACI 117M.
1780		Additionally, after concrete curing, the faceplate waviness, f_w , shall be limited to
1781		the following:
1701		the following.
1782		$f_{w} \le \left(\frac{t_{p}}{2}\right) \left(\frac{s_{t,min}}{s}\right) $ (NM2-1)
		$f_{W} = \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} s \end{pmatrix}$
1783		
1705		
1784		where
1785		s = spacing of the steel anchors, in. (mm)
1786		$s_{t,min} = $ minimum tie spacing, in. (mm)
1787		t_p = thickness of faceplate, in. (mm)
1788		
1789		For cases where only ties are used, <i>st.min/s</i> shall be taken as 1.0 in Equation NM2-
1790		
1791		
1792		User Note: The engineer of record may specify the concrete pour rate and height
1793		to meet the faceplate waviness requirements.
1775		to meet the faceplate wavmess requirements.
1794	9.	Holes for Anchor Rods
1795		
1796		Replace section with the following:
1797		
1798		Holes for anchor rods are permitted to be thermally cut in accordance with the
1799		provisions of Section NM2.2.
1800		
1801	Add t	he following new sections:
1802		
1803	12.	Surface Condition
1804		
1805		Procedures for inspection and correcting surface defects in excess of the depth and
1806		area limitations of those specified in ASTM A6/A6M or other applicable ASTM
1807		specifications shall include the inspection method and acceptance criteria to be
1808		used.
1809		

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

13. Bending 1811

1812The minimum bending radius for materials shall not be less than that specified in1813ASTM A6, Table X4.1 and X4.2. The engineer of record shall provide the1814minimum bending radius for materials not listed in ASTM A6.

1816 14. Commercial Grade Dedication

If not available from a qualified source, the material shall be dedicated for use as specified in Subpart 2.14 of ASME NQA-1. The engineer of record shall provide the fabricator with the critical material characteristics based on the applicable ASTM or other national material or product standards as necessary for dedication of this material.

1824 15. Identification of Steel

The fabricator shall be able to demonstrate, by written procedure and by actual practice, a method of material identification meeting the requirements of the contract documents.

The material shall be identified in one of the following ways as defined by the required use of the material. The material's use shall be defined by the contract documents. If the contract documents do not define the type of identification required, the identification defined in item (a) in the following shall control.

- (a) Material identified by grade and size only. Material need only be identified in such a manner that the purchaser is assured that the specified grade is used, and this documentation shall be obtainable throughout the service life of the structure. The fabricator shall maintain the documentation until such time that those documents are transferred to the owner.
- (b) Material identified by heat number for the structure only. Material test reports shall be identifiable to the structure, but need not be identifiable to an individual member in the structure.
- (c) Material identified by heat number for an individual member, but not subparts, fasteners, or weld consumables. Material test reports shall be identifiable to an individual member in the structure.
- (d) Material identified by heat or production lot number to all components of the structure including subparts, fasteners, and weld consumables. Material test reports shall be identifiable to an individual member, subpart, fastener, or weld consumable.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1854Fabricators shall transfer material test report to the owner for material identified by1855(b), (c), or (d) and remain obtainable throughout the service life of the structure by1856the owner.

1858 NM3. SHOP PAINTING

1857

1859

1861 1862

1863

1871

1876

1878

1880

1881 1882

1860 4. Finished Surfaces

Replace section with the following:

1864Except for stainless steels, machine-finished surfaces shall be protected against1865corrosion by a rust-inhibitive coating that is removable prior to erection or that has1866characteristics that make removal prior to erection unnecessary. This rust-inhibitive1867coating shall be approved by the engineer of record. This machine-finished surface1868requirement shall not apply to no-paint areas required for field welding. Corrosion1869in these no-paint areas for welding is permitted as long as the amount of corrosion1870is not detrimental to the design intent.

1872User Note: Paint (coatings) procurement, application, and inspection for a nuclear1873facility is subject to multiple codes, standards, and regulations that may vary1874substantially from typical fabricator requirements. Contract documents and design1875specifications should be consulted for specific information.

1877 NM4. ERECTION

1879 2. Stability and Connections

Replace section with the following:

The frame of structural steel buildings and composite steel/concrete structures shall 1883 1884 be carried up true and plumb within the limits defined in the Code of Standard 1885 Practice Section 11 and/or contract documents. Temporary bracing shall be provided in accordance with the requirements of the Code of Standard Practice 1886 1887 and/or contract documents wherever necessary to support the loads to which the 1888 structure is subjected, including equipment and the operation of same. For composite 1889 steel/concrete structures, the required bracing shall resist impact and hydrostatic 1890 loads of fluid concrete during placement of concrete within the structure. Bracing 1891 shall be left in place as long as required for safety.

- 1893 Add the following new sections:
- 1895 7. Tolerances for Cranes
- 1897 7a. Tolerances for Crane Column Base Lines

1898

1892

1894

1896

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION jo?

1903

1907

1909

Crane column base lines shall be established as parallel lines and the column centerlines maintained within 1/8 in. (3 mm) of the theoretical distance.

1902 7b. Tolerances for Crane Runway Girders

1904Horizontal sweep in crane runway girders shall not exceed 1/4 in. (6 mm) per 50 ft1905(15 m) length of girder spans. Camber shall not exceed 1/4 in. (6 mm) per 50 ft (151906m) of the girder span over that indicated on the design documents.

1908 7c. Tolerances for Crane Rails

1910 Center-to-center distances of crane rails and the straightness of crane rails shall meet the tolerances prescribed by "Specifications for Top Running Bridge and Gantry 1911 Type Multiple Girder Electric Overhead Traveling Cranes" (CMAA-70). Vertical 1912 1913 misalignment of crane rails measured at centerlines of columns shall meet the 1914 tolerances prescribed by CMAA-70. For polar cranes, the tolerances in Sections 1915 NM4.7a and NM4.7b shall apply, except that the CMAA tolerances for crane span 1916 shall be applied for crane rail diameter. Crane rails shall be centered on the crane 1917 girders wherever possible. For plate girders and wide-flange shapes (i.e., not boxsection beams), in no case shall the real eccentricity be greater than 3/4 of the 1918 1919 thickness of the web, unless such eccentricity is accounted for in design.

1920

1921

1922

1923

1924

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

CHAPTER NN

1925 1926

QUALITY CONTROL AND QUALITY ASSURANCE

1927 1928

1934

1946

1961

Replace Chapter N of the Specification with the following:

This chapter addresses minimum requirements for quality control, quality assurance, and
 nondestructive evaluation for safety-related structural steel systems and steel elements of
 composite members for nuclear facilities.

1935 User Note: This chapter does not address quality control or quality assurance for concrete 1936 reinforcing bars, concrete materials, or placement of concrete for composite members. As 1937 noted in Section NN6, steel-plate composite (SC) construction designed in accordance with 1938 Appendix N9 shall comply with applicable provisions (for the concrete and concrete 1939 reinforcing steel) of ACI 349 or ACI 349M for tests, materials, and construction 1940 requirements. This chapter does not address quality control or quality assurance for surface 1941 preparation or coatings.

1943 User Note: The inspection of open-web steel joists and joist girders, tanks, pressure
1944 vessels, cables, cold-formed steel products, or gage metal products is not addressed in the
1945 Nuclear Specification.

1947 User Note: The provisions of this chapter are pertinent to the activities performed by the
1948 fabricator, erector, and associated parties. Consult Section NA6 for activities related to
1949 calculations and design.
1950

1951 The chapter is organized as follows:

- 1952
 1953 NN1. General Provisions
 1954 NN2. Fabricator and Erector Quality Assurance Program
- 1955 NN3. Fabricator and Erector Documents
- 1956 NN4. Inspection and Nondestructive Evaluation Personnel
- 1957 NN5. Minimum Requirements for Inspection of Structural Steel Buildings and1958 Structures
- 1959 NN6. Minimum Requirements for Inspection of Composite Construction
- 1960 NN7. Nonconforming Material and Workmanship

1962 NN1. GENERAL PROVISIONS1963

1964The fabricator and erector shall include both quality control (QC) and quality1965assurance (QA) as part of their quality plan as specified in this chapter. When1966required by the authority having jurisdiction (AHJ), applicable building code1967(ABC), purchaser, owner, or engineer of record, an independent party shall provide1968additional oversight to ensure the fabricator and erector are following their QC and1969QA programs. Nondestructive examination (NDE) shall be performed by an

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1971		QA.
1972		
1973 1974		User Note: The producers of materials manufactured in accordance with standard specifications referenced in Section NA3 and steel deck manufacturers are not
1975		considered fabricators or erectors.
1976		
1977	NN2.	FABRICATOR AND ERECTOR QUALITY ASSURANCE PROGRAM
1978		
1979		The fabricator and erector shall establish, maintain, and document procedures and
1980		perform inspections to ensure that their work is completed in accordance with the
1981		established quality assurance program, the appropriate elements of the standard, the

1993

1994 1995

1996

1997 1998

1999

2000

2001

2002 2003

2004

2005 2006

2007

2008 2009

2010

2011

2012

2013

individual, agency, or firm approved by the fabricator or erector responsible for

- 1982Nuclear Specification, and the construction documents. The quality assurance1983program shall be developed in accordance with the ASME standard NQA-1,1984Quality Assurance Requirements for Nuclear Facility Applications, or equivalent.198519861986Material identification procedures shall comply with the requirements of the Code1987of Standard Practice, Section 6.1, except that the identification of material deemed1988sofety related shall be maintained ratiovable traceable and transformed to the
- 1988 safety-related shall be maintained, retrievable, traceable, and transferred to the
 1989 owner at the time of delivery as defined in Section NM2.15. The procedure will be
 1990 monitored by the individual responsible for the fabricator's quality program.
 1991
 1992 Using the approved fabrication documents, the fabricator's quality assurance
 - Using the approved fabrication documents, the fabricator's quality assurance inspector (QAI) shall perform inspections of the following as a minimum, as applicable:
 - Shop welding, high-strength bolting, and details in accordance with Section NN5
 - (2) Shop cut and finished surfaces in accordance with Section NM2
 - (3) Shop heating for straightening, cambering, and curving in accordance with Section NM2.1
 - (4) Tolerances for shop fabrication in accordance with Section 11 of the *Code of Standard Practice* and Chapter NM

User Note: The QAI may be employed by the EOR, detailer, fabricator, erector, contractor, and/or constructor.

Using the approved erection documents, the erector's QAI shall perform inspections of the following as a minimum, as applicable:

- (1) Field welding, high-strength bolting, and details in accordance with Section NN5
- (2) Steel deck and steel headed stud anchor placement and attachment in accordance with Section NN6
 - (3) Field cut surfaces in accordance with Section NM2.2

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 56

\$ 2020

(4) Field heating for straightening in accordance with Section NM2.1 2014

Standard Practice and Chapter NM

- 2015 2016
- 2017

2019

2021 2022

2023

2024

2025

2026 2027

2028

2029 2030

2031

2037

2038

2040

2041 2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054 2055

2056

2018 NN3. FABRICATOR AND ERECTOR DOCUMENTS

2020 1. Submittals for Steel Construction

The fabricator or erector shall submit the following documents in electronic or printed form for review and approval by the owner or the engineer of record or their designee in accordance with Section 4 of the Code of Standard Practice, prior to fabrication or erection, as applicable:

(5) Tolerances for field erection in accordance with Section 11 of the Code of

- (1) Fabrication approval documents, unless fabrication documents have been furnished by the owner or the engineer of record
- (2) Erection approval documents, unless erection documents have been furnished by the owner or the engineer of record

2032 At completion of fabrication, the fabricator shall submit a certificate of compliance 2033 to the AHJ stating that the materials supplied and work performed by the fabricator 2034 are in accordance with the construction documents. At completion of erection, the 2035 erector shall submit a certificate of compliance to the AHJ stating that the materials 2036 supplied and work performed by the erector are in accordance with the construction documents.

2. 2039 **Available Documents for Steel Construction**

The following documents shall be available in electronic or printed form for review and approval, as applicable, by the engineer of record or the engineer of record's designee prior to fabrication or erection, as applicable, unless otherwise required in the contract documents to be submitted:

- For structural steel elements, copies of material test reports in accordance (1)with Section NA3.1.
- (2)For steel castings and forgings, copies of material test reports in accordance with Specification Section A3.2.
 - (3) For fasteners, copies of manufacturer's certifications in accordance with Section NA3.3.
- (4)For deck fasteners, copies of manufacturer's product data sheets or catalog data. The data sheets shall describe the product, limitations of use, and recommended or typical installation instructions.
 - (5) For anchor rods and threaded rods, copies of material test reports in accordance with Specification Section A3.4.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2058		(6) For welding consumables, copies of manufacturer's certifications in accordance with Section NA3.5.
2059 2060		(7) For steel headed stud anchors, copies of manufacturer's certifications in accordance with Section NA3.6.
2061 2062 2063 2064		(8) Manufacturer's product data sheets or catalog data for welding filler metals and fluxes to be used. The data sheets shall describe the product, limitations of use, recommended or typical welding parameters, and storage and exposure requirements, including baking, if applicable.
2065		(9) Welding procedure specifications (WPS).
2066 2067 2068		(10) Procedure qualification records (PQR) for WPS that are not prequalified in accordance with AWS D1.1/D1.1M, AWS D1.6/D1.6M, or AWS D1.3/D1.3M, as applicable.
2069 2070		(11) Welding personnel performance qualification records (WPQR) and continuity records.
2071		(12) Fabricator's or erector's written quality assurance manual, as applicable.
2072		(13) Fabricator's or erectors' QC and QA personnel qualifications, as applicable.
2073 2074 2075	NN4.	INSPECTION AND NONDESTRUCTIVE EVALUATION PERSONNEL
2075 2076 2077	1.	Quality Control Inspector Qualifications
2078 2079 2080		Quality control (QC) welding inspectors shall be qualified to the satisfaction of the fabricator's or erector's quality assurance (QA) program.
2080 2081 2082 2083		QC bolting inspection personnel shall be qualified on the basis of documented training and experience in structural bolting inspection in compliance with the
		fabricator's or erector's quality assurance (QA) program.
2084 2085 2086 2087 2088		
2084 2085 2086 2087 2088 2089 2090	2.	fabricator's or erector's quality assurance (QA) program. User Note: The qualification requirements for the fabricator's or erector's inspectors will require review and approval by the owner or their designated representative. The QCI may be employed by the fabricator, erector, contractor,
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094	2.	fabricator's or erector's quality assurance (QA) program. User Note: The qualification requirements for the fabricator's or erector's inspectors will require review and approval by the owner or their designated representative. The QCI may be employed by the fabricator, erector, contractor, and/or constructor.
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093	2.	 fabricator's or erector's quality assurance (QA) program. User Note: The qualification requirements for the fabricator's or erector's inspectors will require review and approval by the owner or their designated representative. The QCI may be employed by the fabricator, erector, contractor, and/or constructor. Quality Assurance Inspector Qualifications QA welding inspectors shall be qualified to the satisfaction of the fabricator's or erector's QA program, the owner's written requirements, and in accordance with

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

supervision of WI, who are on the premises and available when weld inspection is being conducted, or

(b) Qualified under the provisions of AWS D1.1/D1.1M, clause 8.1.4, and AWS D1.6, clause 6, if applicable to stainless steel welding.

QA bolting inspection personnel shall be qualified on the basis of documented training and experience in structural bolting inspection as defined in the QA program.

3. NDE Personnel Qualifications

NDE personnel shall be qualified in accordance with their employer's written practice, which shall meet the criteria of AWS D1.1/D1.1M, clause 8.1.4.2(4), and AWS D1.6, clause 8.1.4.2, if applicable to stainless steel welding, and

- (a) American Society for Nondestructive Testing (ASNT) SNT-TC-1A, Recommended Practice for the Qualification and Certification of Nondestructive Testing Personnel, or
- (b) ASNT CP-189, Standard for the Qualification and Certification of Nondestructive Testing Personnel.

2121 NN5. MINIMUM REQUIREMENTS FOR INSPECTION OF STRUCTURAL 2122 STEEL BUILDINGS AND STRUCTURES 2123 2123

2124 1. Quality Control

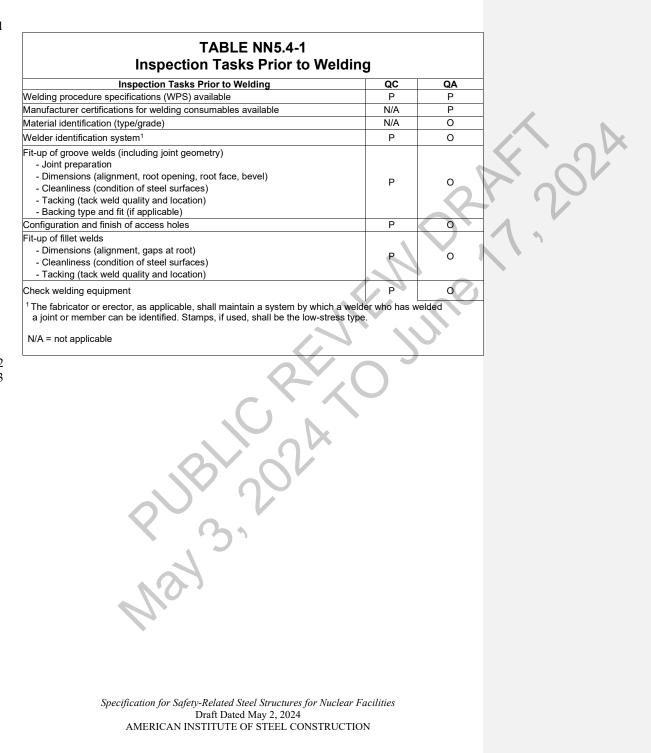
QC inspection tasks shall be performed by personnel qualified as defined in Section NN4.1, as applicable, in accordance with Sections NN5.4, NN5.6, and NN5.7.

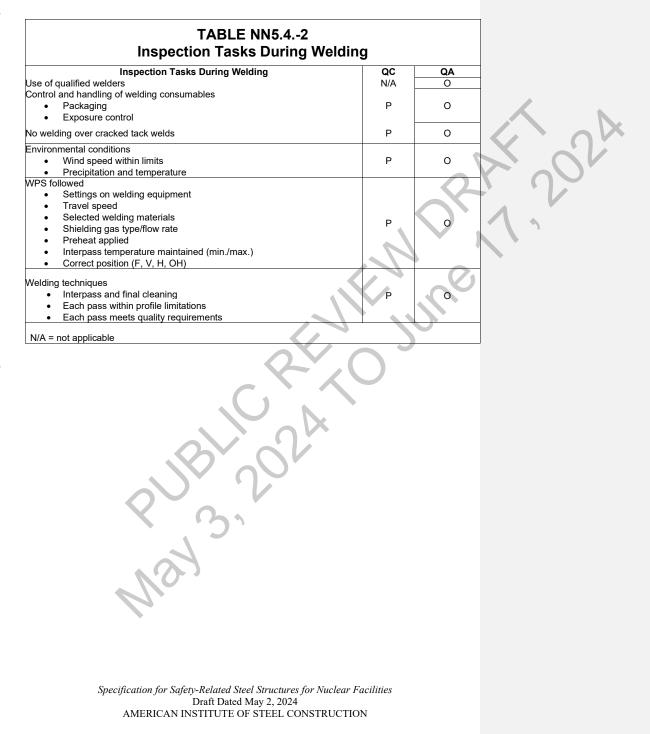
2129Tasks listed for QC in Tables NN5.4-1 through NN5.4-3 and Tables NN5.6-12130through NN5.6-3 shall be those inspections performed by qualified personnel to2131ensure that the work is performed in accordance with the construction documents.2132

For QC inspection, the applicable contract documents shall be the approval documents, and the applicable referenced specifications, codes, and standards.

2136User Note: The personnel performing QC inspection need not refer to the design2137documents and project specifications. The Code of Standard Practice, Section21384.2(a), requires the transfer of information from the contract documents (design2139documents and project specifications) into accurate and complete fabrication and2140erection documents, allowing QC inspection to be based upon approved fabrication2141and erection documents alone.

2143 2. Quality Assurance


Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION


2145		Quality assurance (QA) inspection of fabricated items shall be made at the	
2146		fabricator's plant.	
2147		, , , , , , , , , , , , , , , , , , ,	
2148		QA inspection of the erected steel system shall be made at the project site.	
2149			
2150		User Note: The quality assurance inspection required on safety-related work is	
2151		performed by an inspector employed by or contracted to the fabricator or erector.	
2152		The fabricator or erector coordinates the work of the quality assurance inspector	
2153		internally to meet the requirements of the project specifications, the Nuclear	
2154		Specification, and the fabricator's or erector's quality program. Because this work	
2155		is internal to the fabricator or inspector, it is typically their responsibility to	
2156		coordinate the inspection tasks in such a manner as to minimize disruption of the	
2157		work being performed.	
2158			
2159		Surveillance performed by the owner or the owner's representative is typically	1
2160		identified as witness or hold points in the design documents. In order to minimize	
2161		work interruption, advance notice of the schedule for these witness or hold points	
2162		should be identified in the specifications or design documents.	
2163			
2164		The QAI or qualified personnel identified in the QA program shall review the	
2165		material test reports and certifications as listed in Section NN3.2 for compliance	
2166		with the construction documents before the fabricated members and components	
2167		are shipped from the fabricator's plant.	
2168			
2169		QA inspection tasks shall be performed by the QAI in accordance with Sections	
2170		NN5.4, NN5.6, and NN5.7.	
2171		Telle list 1.6 - OA in Telle NDIS 4.1 downed NDIS 4.2 and Telle NDIS 6.1	
2172		Tasks listed for QA in Tables NN5.4-1 through NN5.4-3 and Tables NN5.6-1	
2173 2174		through NN5.6-3 shall be those inspections performed by the QAI to ensure that the work is performed in accordance with the construction documents.	
2174		the work is performed in accordance with the construction documents.	
2175		For QA inspection, the applicable construction documents shall be the approval	
2170		documents, specifications, and applicable reference codes and standards.	
2178		documents, specifications, and appreade reference codes and standards.	
2179	3.	Coordinated Inspection	
2180			
2181		Where a task is to be performed by both QC and QA, it is permitted to coordinate	
2182		the inspection function between the personnel qualified for QCI and QAI so that	
2183		the inspection functions are performed by only one party. Where QA relies upon	
2184		inspection functions performed by personnel qualified for quality control	
2185		inspection, the approval of the engineer of record and the AHJ is required, and the	
2186		procedure shall be stated in the QA program.	
2187			
2188			
2189			
2190	4.	Inspection of Welding	

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2191	
2192	Observation of welding operations and visual inspection of in-process and
2193	completed welds shall be the primary method to confirm that the materials,
2194	procedures and workmanship are in conformance with the construction documents.
2195	Applicable provisions of AWS D1.1/D1.1M, AWS D1.6/D1.6M, or AWS
2196	D1.3/D1.3M shall apply to all structural and stainless steel.
2197	
2198	User Note: The technique, workmanship, appearance, and quality of welded
2199	construction are addressed in Section NM2.4.
2200	
2201	User Note: Visual weld acceptance criteria can also be found in the Electric Power
2202	Research Institute document NCIG-01, Revision 2, "Visual Weld Acceptance
2203	Criteria for Structural Welding at Nuclear Power Plants," NP-5380, Volume 1,
2204	September 1987. These nonmandatory inspection guidelines may be used for visual
2205	inspection of structural welds made in accordance with the provisions of AWS
2205	D1.1/D1.1M if approved by the engineer of record. These guidelines provide
2200	background information and instructions to assist the inspector in evaluating weld
2208	attributes. Measuring techniques and guidance on the accuracy, frequency, and
2200	locations for measuring welds are discussed. It is important for the inspector to
2209	understand weld size tolerance and significant measurements units in order to
2210	properly assess the acceptance of each weld.
2211	property assess the acceptance of each weld.
2212	As a minimum, welding inspection tasks shall be in accordance with Tables NN5.4-
2213	1, NN5.4-2, and NN5.4-3. In these tables, the inspection tasks shall be as follows:
2214	1, 1113.+2, and 1113.+3. In these tables, the hispection tasks shall be as follows.
2213	Observe (O)—The inspector shall observe these items on a random basis.
2210	Operations need not be delayed pending these inspections.
2217	Perform (P)—These tasks shall be performed for each welded joint or member.
2218	renom (r)— mese tasks shan be performed for each weited joint of member.
2219	
2220	
	(\mathbf{A})

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

TABLE NN5.4-3 Inspection Tasks After Weld	ling		
Inspection Tasks After Welding	QC	QA	-
Velds cleaned	Р	0	7
Size, length, and location of welds	Р	0	
Velds meet visual acceptance criteria Crack prohibition Weld/base-metal fusion Crater cross section Weld profiles Weld size Undercut Porosity	Ρ	0	× 02
Arc strikes	Р	0	
c-area ¹	Р	0	
Backing removed and weld tabs removed (if required)	Р	0	
Repair activities	Р	Р	
Document acceptance or rejection of welded joint or member	P	0	

5. Nondestructive Examination of Welded Joints

2231 5a. Procedures

Ultrasonic testing (UT), magnetic particle testing (MT), penetrant testing (PT), and radiographic testing (RT), where required, shall be performed by qualified NDE personnel in accordance with AWS D1.1/D1.1M and AWS D1.6/D1.6M, as applicable.

User Note: The technique, workmanship, appearance, and quality of welded construction is addressed in Section NM2.4.

2241 5b. CJP and PJP Groove Weld NDE

2243Where identified on the contract documents, complete-joint-penetration (CJP)2244groove-welded joints subjected to transversely applied tension loading in butt, T-,2245and corner joints, in materials 5/16 in. (8 mm) thick or greater, shall receive 100%2246UT or RT examination.

2248User Note: Many joints in design-basis accident situations undergo transversely2249applied tension. The EOR, when evaluating welded joints subject to 100% UT or2250RT examination, should determine the welded joints critical to the safe shutdown2251of a nuclear facility and convey this inspection requirement to the fabricator and2252erector. The intent of this requirement is not to establish that all welds that could2253undergo transversely applied tension be 100% inspected, but rather only the welds2254depended on for a safe shutdown.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION As a minimum, all CJP welds shall be 10% inspected by UT or RT examination.

As a minimum, 10% of partial-joint-penetration (PJP) welds shall be inspected by MT or PT examination.

In lieu of performing 10% examinations on each CJP or PJP weld, the fabricator or erector is permitted to inspect 100% of one weld in 10 from a series of welds grouped in a population. Populations shall be established based on like thickness, materials, welded joint geometry, and welding processes to satisfy a minimum of 10% NDE inspections of CJP or PJP groove-welded joints. Final determination of this method shall be accepted by the EOR prior to the start of fabrication or construction.

2269 User Note: The fabricator, erector, and EOR should identify, prior to construction, 2270 a method of quantifying the inspection requirements of groove welds. The intent 2271 of inspecting 100% of one weld in 10 in lieu of 10% of each welded joint is for the 2272 EOR, fabricator, and erector to determine the best approach to satisfy that 2273 inspections were performed but also minimize the impact to productivity, cost, and 2274 schedule, while maintaining the same level of safety that inspecting 10% of each 2275 weld accomplishes. As an example, populations can be established either by part number, drawing, WPS, work package, elevation, or by other means that identify 2276 2277 the size of the weld population from which the 100%-of-one-weld-in-10 sample is 2278 selected; selections based off an individual welder is not advised. Testing should be a continuous process throughout fabrication and erection. Populations and 2279 2280 testing need not carry over from fabricator to erector as the method of establishing the population may differ. The method of selecting the weld population and 10% 2281 2282 sample should be reviewed and agreed upon by the engineer of record.

2284 5c. Welded Joints Subjected to Fatigue

2255

2258

2259

2260

2283

2285

2286

2287 2288

2290

2291 2292

2293

2294 2295

2296

2297 2298

2299

CJP groove welded joints subjected to fatigue shall be identified on the contract documents and be 100% inspected by either UT or RT.

2289 5d. Increase in Rate of Groove Weld NDE

Groove weld NDE shall increase in the event of a weld rejection in accordance with the following:

(a) Populations inspected at 10%: An additional 10% section of the same welded joint shall be inspected. If NDE results determine the additional 10% section of the weld joint is acceptable, the remaining weld joints within the population shall remain at a 10% NDE inspection rate; if NDE results determine the additional 10% section of the weld joint is unacceptable, all weld joints within the population shall be inspected at a 100% rate.

> Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

(b) Populations inspected at 100% of one weld in 10: An additional weld joint within the same population shall be selected and 100% of the joint length shall be inspected. If NDE results determine the additional weld joint is acceptable, the remaining weld joints within the population shall remain at a 100% NDE inspection of one weld in 10; if NDE results determine the additional weld joint is unacceptable, all weld joints within the population shall be inspected at a 100% rate.

Increased groove weld NDE shall only be applicable to a single population. Extending increased groove weld NDE between populations shall not be permitted.

2311 5e. Documentation2312

All NDE performed shall be documented. For shop fabrication, the NDE report shall identify the tested weld by piece mark and location in the piece. For field work, the NDE report shall identify the tested weld by location in the structure, piece mark, and location in the piece.

When a weld is rejected on the basis of NDE, the NDE record shall indicate the
location of the defect and the basis of rejection.

2321 6. Inspection of High-Strength Bolting

Observation of bolting operations shall be the primary method used to confirm that the materials, procedures, and workmanship incorporated in construction are in conformance with the construction documents and the provisions of the RCSC *Specification for Structural Joints Using High-Strength Bolts*, hereafter referred to as the RCSC *Specification*.

- (1) For snug-tight joints, pre-installation verification testing as specified in Table NN5.6-1 and monitoring of the installation procedures as specified in Table NN5.6-2 shall not be applicable. The QAI need not be present during the installation of fasteners in snug-tight joints.
- (2) For pretensioned joints and slip-critical joints, when the installer is using the turn-of-nut method with matchmarking techniques, the direct-tension-indicator method, or the twist-off-type tension control bolt method, monitoring of bolt pretensioning procedures shall be as specified in Table NN5.6-2. The QAI need not be present during the installation of fasteners when these methods are used by the installer.
- (3) For pretensioned joints and slip-critical joints, when the installer is using the calibrated wrench method or the turn-of-nut method without matchmarking, monitoring of bolt pretensioning procedures shall be as specified in Table NN5.6-2. The QAI shall be engaged in their assigned inspection duties during installation of fasteners when these methods are used by the installer.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

m (P)—These tasks shall be performed for each bolted connection.
Operations need not be delayed pending these inspections.
ve (O)-The inspector shall observe these items on a random basis.
5.6-2, and NN5.6-3. In these tables, the inspection tasks shall be as follows:
ninimum, bolting inspection tasks shall be in accordance with Tables NN5.6-

connecti	on.	
	[
QC	QA	
N/A	Р	X OV
Р	0	
Р	0	
Р	0	
Р	0	
P	0	
0	ο	
	QC N/A P P P P P	N/A P P O P O P O P O P O P O P O P O

N/A = not applicable

TABLE NN5.6-2 Inspection Tasks During Bolting		
Inspection Tasks During Bolting	QC	QA
Fastener assemblies placed in all holes and washers (if required) are positioned as required	Р	0
Joint brought to the snug-tight condition prior to the pretensioning operation	Р	0
Fastener component not turned by the wrench prevented from rotating	Р	0
Fasteners are pretensioned in accordance with a method approved by the RCSC Specification and progressing systematically from the most rigid point toward the free edges	Ρ	0

N'C

2358

Table NN5.6-3		
Inspection Tasks After Bolting		
Inspection Tasks after Bolting	QC	QA
Document acceptance or rejection of bolted connections	Р	0

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2359		
2360	7.	Inspection of Galvanized Structural Steel Main Members
2361		
2362		Exposed cut surfaces of galvanized structural steel main members and exposed
2363		corners of rectangular HSS shall be visually inspected for cracks subsequent to
2364		galvanizing. Cracks shall be repaired or the member shall be rejected.
2365		
2366		User Note: It is normal practice for fabricated steel that requires hot dip galvanizing
2367		to be delivered to the galvanizer and then shipped to the jobsite. As a result,
2368		inspection at the jobsite is common.
2369		
	0	
2370	8.	Other Inspection Tasks
2371		
2372		The fabricator's QAI shall inspect the fabricated steel to verify compliance with the
2373		details shown on the approved fabrication documents.
2374		
2375		User Note: This includes such items as correct application of shop joint details at
2376		each connection.
2377		
2378		The erector's QAI shall inspect the erected steel frame to verify compliance with
2379		the details shown on the approved erection documents.
2380		
2381		User Note: This includes such items as braces, stiffeners, member locations, and
2382		correct application of joint details at each connection.
2383		
2384		The QAI shall be on the premises for inspection during the placement of anchor
2385		rods and other embedments supporting structural steel for compliance with the
2386		construction documents. As a minimum, the diameter, grade, type, and length of
2387		the anchor rod or embedded item, and the extent or depth of embedment into the
2388		concrete shall be verified and documented prior to placement of concrete.
2389		
2390		The QAI shall inspect the fabricated steel or erected steel frame, as applicable, to
2391		verify compliance with the details shown on the construction documents.
2392		
2393		User Note: This includes such items as braces, stiffeners, member locations, and
2394		correct application of field joint details at each connection.
2395		
2396	NN6.	MINIMUM REQUIREMENTS FOR INSPECTION OF COMPOSITE
2397		CONSTRUCTION
2398		
2399		Inspection of structural steel and steel deck used in composite construction shall
2400		comply with the requirements of this section.
2401		
2402		For welding of steel headed stud anchors, the provisions of AWS D1.1/D1.1M shall
2403		apply.
2404		
		Specification for Safaty Polated Steal Structures for Nuclear Facilities

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2405 For welding of steel deck, observation of welding operations and visual inspection 2406 of in-process and completed welds shall be the primary method to confirm that the 2407 materials, procedures, and workmanship are in conformance with the construction 2408 documents. All applicable provisions of AWS D1.3/D1.3M shall apply. Deck 2409 welding inspection shall include verification of the welding consumables, welding 2410 procedure specifications, welding procedure qualification for nonprequalified 2411 joints, qualifications of welding personnel prior to the start of the work, 2412 observations of the work in progress, and a visual inspection of all completed welds. 2413 For steel deck attached by fastening systems other than welding, inspection shall 2414 include verification of the fasteners to be used prior to the start of the work, observations of the work in progress to confirm installation in conformance with 2415 the manufacturer's recommendations, and a visual inspection of the completed 2416 2417 installation. 2418

- In Table NN6.1, the inspection tasks shall be as follows:
- 2421 P—Perform these tasks for each steel element.

2419

2420

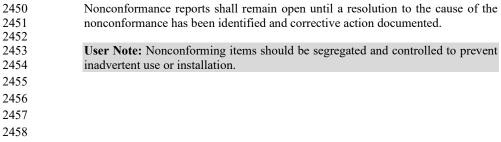
2422

2436

2438

2445

For welding of faceplates, observation of welding operations and visual 2423 2424 inspection of in-process and completed welds shall be the primary method to 2425 confirm that the materials, procedures, and workmanship are in conformance with the construction documents. Steel-plate composite (SC) structural element 2426 2427 welding inspection of the module shall include verification of the welding 2428 consumables, welding procedure specifications, welding procedure 2429 qualification for nonprequalified joints, qualifications of welding personnel prior to the start of the work, observations of the work in progress, and a visual 2430 inspection of all completed welds. Tests, materials, and construction 2431 requirements for concrete shall comply with the applicable provisions of ACI 2432 349 or ACI 349M. In Tables NN6.2 and NN6.3, the inspection tasks are as 2433 2434 follows:


2435 P—Perform these tasks for each steel element.

2437 NN7. NONCONFORMING MATERIAL AND WORKMANSHIP

2439Identification and rejection of material or workmanship that is not in conformance2440with the construction documents is permitted at any time during the progress of the2441work. This provision shall not relieve the owner or the inspector of the obligation2442for timely, in-sequence inspections. Nonconforming material and workmanship2443shall be brought to the immediate attention of the fabricator or erector, as2444applicable.

Nonconforming material or workmanship shall be brought into conformance,
dispositioned as "use as is," or made suitable for its intended purpose as determined
by the engineer of record.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2460

TABLE NN6.1 Inspection of Steel Elements of Composite Constru Prior to Concrete Placement	uction	3
Inspection of Steel Elements of Composite Construction Prior to Concrete Placement	QC	QA
Verify placement and installation of steel deck and all deck accessories with construction documents	Р	P
Verify size and location of welds, including support, sidelap, and perimeter welds	Р	Р
Verify welds meet visual acceptance criteria	Р	Р
Verify repair activities of decking and accessories, if applicable	Р	Р
Verify placement and installation of steel headed stud anchors: Check spacing, type, and installation	Р	Р
Verify repair activities of steel headed stud anchors, if applicable	Р	Р
Document acceptance or rejection of steel elements	Р	Р

2461

TABLE NN6.2 Inspection of SC Structural Element Prior to Concrete Placement		
Inspection of Steel Elements of Composite Construction Prior to Concrete Placement	QC	QA
Inspection of faceplates	Р	Р
Placement and installation of ties	Р	Р
Placement and installation of shear connectors	Р	Р
Document acceptance or rejection of steel elements	Р	Р

2462 2463

TABLE NN6.3 Inspection of SC Structural Element After Concrete Placement

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 70

1,202

Inspection of Steel Elements of Composite Construction after Concrete Placement	QC	QA
Inspection of faceplates	Р	Р
Document acceptance or rejection of steel elements	Р	Р

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

PUBL202A

APPENDIX N1

DESIGN BY ADVANCED ANALYSIS

Modify Appendix 1 of the Specification as follows.

2479 N1.3. DESIGN BY INELASTIC ANALYSIS

2481 1. General Requirements

2470 2471

2476

2477 2478

2480

2482 2483

2484 2485

2486

2487

2488 2489

2490

2503

2504 2505 2506

2507

2508

2509

2510 2511

2512

2513 2514 Add the following to the end of the first paragraph:

It is permitted to have localized inelastic behavior due to thermally induced load effects only in individual beams or their connections provided that an inelastic analysis of the associated structure demonstrates that the structure is able to maintain its global stability and structural integrity to withstand all other concurrently acting loads.

2491 User Note: Unlike impulsive and impactive loads, which affect a single or a few 2492 structural members, the accident temperature load case generally affects a large portion, if not the entirety of a structure. Also, unlike the case of design for 2493 impulsive and impactive loads, where the affected members are a priori known and 2494 2495 therefore selectively targeted for detailing in accordance with the requirements of 2496 Section NB3.14, the same approach is difficult to implement for the accident 2497 temperature load case (except for incorporating thermal-load relieving features mentioned in the User Note for Sections NB2.5 and NB2.6). Accordingly, only 2498 localized inelastic response in individual beams is permitted as long as it will not 2499 2500 adversely affect the structure's ability to resist other loads (e.g., sustained gravity 2501 load and the design basis earthquake load, which are part of the governing extreme environmental and abnormal load combinations). 2502

Add the following as the last paragraph:

When inelastic analysis is used for design, attention shall be paid to the induced deflections of the structural steel member(s), as well as to the effects of such deflections on supported components such as piping, HVAC ducts, and cable trays, to ensure that the components will be able to perform their intended functions.

User Note: Increased deflections resulting from the utilization of inelastic design may cause additional component loading and may reduce component clearances (gaps) required to prevent vibration interaction.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION × 202

- 25162517 DESIGN OF FILLED COMPOSITE MEMBERS (HIGH STRENGTH)
- 25182519 No changes to Appendix 2 of the Specification.
- 2520

2515

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Jr M

in the second

73

JIE JUNE

FATIGUE

No changes to Appendix 3 of the Specification.

2522 2523

2521

2523

2525

2526 2527

2528 2529

> Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

PUBLO2A BUBLO2A BUBLO2A

2530		APPENDIX N4
2531		
2532		STRUCTURAL DESIGN FOR FIRE CONDITIONS
2533		
2534	Modif	y Appendix 4 of the Specification as follows.
2535		
2536	N4.1.	GENERAL PROVISIONS
2537		
2538		Add the following paragraphs after the introductory paragraph:
2539		
2540		The intended functions of the structure under a design basis fire shall be stated in
2541		the design basis documents. The provisions of Appendix N4 shall be for life safety
2542		associated with evacuation of building occupants in the event of a design-basis fire.
2543		The Nuclear Specification does not address either "Important to Safety" structural
2544 2545		steel members or loading conditions associated with a facility fire.
2343 2546		Structural steel shall be fire protected to achieve the fire resistance rating as
2540		established by fire hazard analysis. Where engineering analysis is used for
2548		structural evaluation for fire conditions, design material parameters at elevated
2549		temperatures during the design-basis fire event shall be those defined in
2550		Specification Table A-4.2.1 and Table NA-4.2.2. Other material parameter values
2550		are permitted to be used provided they are substantiated or verified by test. The
2552		possible increased deflection that may occur due to elevated temperatures shall be
2553		considered in the design.
2554		
2555	N4.2.	STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS
2556		
2557	3a.	Thermal Elongation
2558 2559		Replace section with the following:
2559		Kepiace section wan the johowing.
2561		The coefficients of thermal expansion shall be taken as follows:
2562		
2563		(a) For structural and reinforcing steels: For calculations at temperatures above
2564		150°F (66°C), the coefficient of thermal expansion shall be 7.8×10^{-6} /°F (1.4
2565		x 10 ⁻⁵ /°C).
2566		(b) For normal weight concrete: For calculations at temperatures above 150°F
2567		(66°C), the coefficient of thermal expansion shall be 5.5 x 10^{-6} /°F (9.9 x
2568		$10^{-6/\circ}$ C).
2569		
2570		User Note: Table A-4.2.1 in the Specification is intended for carbon steel
2571		applications. For stainless steel and other alloy steels the user needs to establish
2572		appropriate values based upon testing or qualified references.

75

X

2574 2575

User Note: At 1,000°F (540°C), concrete starts to deteriorate rapidly and the strength of reinforcing steel will be affected. This should be taken into account in the design.

2576 2577

2578Replace Table A-4.2.2 with the following (delete reference to lightweight concrete):2579

TABLE NA-4.2.2 Properties of Concrete at Elevated Temperatures $k_c = f'_c(T) / f'_c$ ε_{cu}(T), % Concrete $k_{Ec} = E_c(T)/E_c$ Normal Weight Normal Weight Temperature °F (°C) Concrete Concrete 68 (20) 1.00 1.00 0.25 0.34 200 (93) 0.95 0.93 0.75 0.46 400 (200) 0.90 550 (290) 0.58 0.86 0.61 0.57 0.62 600 (320) 0.83 800 (430) 0.71 0.38 0.80 1000 (540) 0.54 0.20 1.06 1200 (650) 0.38 0.092 1.32 1400 (760) 0.21 0.073 1.43 1600 (870) 0.10 0.055 1.49 1800 (980) 0.05 0.036 1.50 2000 (1100) 0.01 0.018 1.50 0.00 2200 (1200) 0.00 0.00

2580 2581

2582

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

YUN B

EVALUATION OF EXISTING STRUCTURES

2583

2584 2585

2586 2587

2595

2604

2612

86 *Replace Appendix 5 of the Specification with the following:*

This appendix applies to the evaluation of the strength and stiffness under static loads of existing structures by structural analysis, by load tests, or by a combination of structural analysis and load tests when specified by the engineer of record (EOR) or in the contract documents. For such evaluation, the steel grades are not limited to those listed in Section NA3.1. This appendix does not address load testing for the effects of seismic and other dynamic loads. Section N5.4 is only applicable to static vertical gravity loads applied to existing roofs or floors.

User Note: The scope of Appendix N5 follows the *Specification*. Where the evaluation is for existing safety-related structures subjected to other than static loads or load combinations, or where the evaluation uses dynamic load analysis, dynamic testing, or load tests other than those in the scope of Section N5.4, the EOR is responsible to show that the test and analytical evaluation methods employed are acceptable to the authority having jurisdiction (AHJ).

2603 The appendix is organized as follows:

- 2605 N5.1. General Provisions
- 2606 N5.2. Material Properties
- 2607 N5.3. Evaluation by Structural Analysis
- 2608 N5.4. Evaluation by Load Tests
- 2609 N5.5. Evaluation Report 2610
- 2611 N5.1. GENERAL PROVISIONS

These provisions shall be applicable when the evaluation of an existing steel 2613 structure is specified for (a) verification of a specific set of design loadings or (b) 2614 2615 determination of the design strength of a force resisting member or system. The 2616 evaluation shall be performed by structural analysis (Appendix N5.3), by load tests (Appendix N5.4), or by a combination of structural analysis and load tests, as 2617 specified in the contract documents. Where load tests are used, the EOR shall first 2618 2619 analyze the structure, prepare a testing plan, and develop a written procedure to prevent deformation that could affect the integrity of the equipment and 2620 components supported by it or located in its vicinity during testing. 2621

2623 N5.2. MATERIAL PROPERTIES

- 2624 1. Determination of Required Tests
- 2625

2622

2626The EOR shall determine the specific tests that are required from Appendix N5.2.22627through N5.2.6 and specify the locations where they are required. Where available,2628the use of applicable design documents is permitted to reduce or eliminate the need2629for testing.

2631 2. Tensile Properties

2630

2632

2655

2657

2667

2633 Tensile properties of members shall be considered in evaluation by structural 2634 analysis (Appendix N5.3) or load tests (Appendix N5.4). Such properties shall 2635 include the yield stress, tensile strength, and percent elongation. Steel grade shall be verified by either certified material test reports (CMTR) or certified reports of 2636 tests made by the fabricator or a testing laboratory in accordance with ASTM 2637 2638 A6/A6M or ASTM A568/A568M, as applicable. Evidence shall exist that the 2639 material used was dedicated and traceability was maintained during fabrication and 2640 erection. When steel grade cannot be established by existing documentation, tensile 2641 tests shall be conducted in accordance with ASTM A370 from samples cut from components of the structure to establish the steel properties. Nominal steel 2642 2643 properties of steel grades shall be used in the evaluation of existing structures by structural analysis. Use of steel tensile properties greater than nominal values is 2644 2645 permissible only when it can be shown that (a) the coupons taken for CMTR or 2646 certified report represent the structure being evaluated, and (b) the value selected is 2647 derived from a statistical analysis indicating a high confidence level. If necessary, 2648 additional coupons from the as-built structure shall be tested to supplement the 2649 CMTR or certified report results, as directed by the EOR. 2650

2651User Note: Steel properties if established from a statistical analysis with a 95% or2652greater confidence level are generally considered to be conservative and acceptable.2653However, in nuclear facilities, the use of the actual properties from CMTR, certified2654report, and the results of tensile tests is generally not permitted by the AHJ.

2656 **3.** Chemical Composition

2658Where welding is anticipated for repair or modification of existing structures, the2659chemical composition of the steel shall be determined for use in preparing a welding2660procedure specification (WPS). Where available, results from CMTR or certified2661reports of tests made by the fabricator or a testing laboratory in accordance with2662ASTM procedures is permitted for this purpose. Otherwise, analyses shall be2663conducted in accordance with ASTM A751 from the samples used to determine2664tensile properties or from samples taken from the same locations.

2666 4. Base Metal Notch Toughness

2668Where welded tension splices in heavy shapes and plates as defined in Sections2669NA3.1d and NA3.1e are critical to the performance of the structure, the Charpy V-2670notch toughness shall be determined in accordance with the provisions of Section2671NA3.1e. If the notch toughness so determined does not meet the provisions of2672Section NA3.1e, the EOR shall determine if remedial actions are required.

2673 2674 **5. Weld Metal**

2676When specified by the EOR, representative samples of weld metal shall be2677obtained. The EOR shall specify the nature of the tests to be performed.2678

2679 6. Bolts

2675

2680

2702

2706

2709

2710

2681Representative samples of bolts shall be inspected to determine markings and2682classifications. Where bolts cannot be identified visually, representative samples2683shall be removed and tested to determine tensile strength in accordance with ASTM2684F606/F606M and the bolt classified accordingly. Alternatively, the assumption that2685the bolts are ASTM A307 is permitted.

2687 N5.3. EVALUATION BY STRUCTURAL ANALYSIS

2688 1. Dimensional Data

26892690All dimensions used in the evaluation—such as spans, column heights, member2691spacings, bracing locations, cross-section dimensions, thicknesses, and connection2692details—shall be determined from a field survey. Alternatively, when available, it2693is permitted to determine such dimensions from applicable design documents with2694field verification of critical values.

26962.Strength Evaluation2697

2698Forces (load effects) in members and connections shall be determined by structural2699analysis applicable to the type of structure evaluated. The load effects shall be2700determined for the loads and factored load combinations stipulated in Section NB2,2701except those involving seismic or dynamic loads.

In addition to Appendix N5, the available strength of members and connections
shall be determined from applicable provisions of the Nuclear Specification
chapters and appendices.

2707 3. Serviceability Evaluation2708

Where required, the deformations at service loads shall be calculated and reported.

N5.4. EVALUATION BY LOAD TESTS2712

1. Determination of Live Load Rating by Testing

2715To determine the live load rating of an existing floor or roof structure by testing, a2716test load shall be applied incrementally in accordance with the EOR's plan. In2717addition to the load-deformation monitoring, the structure shall be monitored and2718shall be visually inspected for signs of distress or imminent failure at each load

level. Measures shall be taken if these or any other unusual conditions areencountered.

The tested design strength of the structure shall be taken as the maximum applied 2722 2723 test load plus the in-situ dead load. The live load rating of a floor structure shall be determined by setting the tested design strength equal to 1.2D + 1.6L, where D is 2724 2725 the nominal dead load and L is the nominal live load rating for the structure. The 2726 nominal live load rating of the floor structure shall not exceed that which can be 2727 calculated using applicable provisions of the specification. For roof structures, L_r , 2728 S, or R as defined in ASCE/SEI 7, shall be substituted for L. More severe load combinations shall be used where required by applicable regulatory and 2729 enforcement authorities. 2730

2732 Periodic unloading shall be considered once the service load level is attained and 2733 before the load combination 1.2D + 1.6L is placed on the structure. Deformations of the structure, such as member deflections, shall be monitored at critical locations 2734 2735 during the test, referenced to the initial position before loading. It shall be 2736 demonstrated, while maintaining the maximum test load for one hour, that the 2737 deformation of the structure does not increase by more than 10% above that at the 2738 beginning of the holding period. It is permissible to repeat the sequence if necessary 2739 to demonstrate compliance. 2740

2741Deformations of the structure shall also be recorded 24 hours after the test loading2742is removed to determine the amount of permanent set. Where it is not feasible to2743load test the entire structure, a segment or zone of not less than one complete bay,2744representative of the most critical conditions, shall be selected.2745

27462.Serviceability Evaluation2747

2721

2731

2748

2749

2750

2751 2752

2754

When load tests are prescribed, the structure shall be loaded incrementally to the service load level. The service test load shall be held for a period of one hour, and deformations shall be recorded at the beginning and at the end of the one-hour holding period.

2753 N5.5. EVALUATION REPORT

After the evaluation of an existing structure has been completed, the EOR shall 2755 2756 prepare a report documenting the evaluation. The report shall indicate whether the 2757 evaluation was performed by structural analysis, by load testing, or by a 2758 combination of structural analysis and load testing. Furthermore, when testing is 2759 performed, the report shall include the loads and load combination used and the load-deformation and time-deformation relationships observed. All relevant 2760 information obtained from design documents, material test reports, and auxiliary 2761 2762 material testing shall also be reported. Finally, the report shall indicate whether the 2763 required strength of the structure, including members and connections, is adequate 2764 to withstand the load combinations of either Section NB2.5 or NB2.6, whichever is 2765 applicable.

> RUBL 202A Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024

81

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

CREVIEW DUNE

MEMBER STABILITY BRACING

2772 No changes to Appendix 6 of the Specification.

2773

2768 2769

2770 2771

2774

2775

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

ALTERNATIVE METHODS OF DESIGN FOR STABILITY

2781 No changes to Appendix 7 of the Specification.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

202A

PUBL202A

- 2792 No changes to Appendix 8 of the Specification.2793
- 2794

2787

2795

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2796 Add the following Appendix.

2797

APPENDIX N9

STEEL-PLATE COMPOSITE (SC) STRUCTURAL ELEMENTS 2798

2799

2814

2820

2800 This appendix addresses the design and detailing requirements, including for seismic 2801 applications, for steel-plate composite (SC) structural elements and their connections. SC 2802 structural elements include SC walls, SC slabs, and SC basemats.

2803 The SC structural elements consist of two steel faceplates that are connected to each other 2804 using ties. These faceplates act compositely with the concrete infill by means of shear 2805 connectors.

User Note: Composite plate shear walls in Chapter NI are similar to steel-plate composite 2806 2807 (SC) walls. However, the requirements of Chapter NI are limited to standalone shear walls.

2808 The appendix is organized as follows: 2809

- 2810 N9.1. Design Requirements
- 2811 N9.2. Analysis Requirements
- 2812 N9.3. Design of SC Structural Elements
- 2813 N9.4. Design of SC Structural Element Connections

2815 User Note: A flowchart to facilitate the use of the appendix has been provided in the Commentary. 2816

N9.1. DESIGN REQUIREMENTS 2817

- 2818 1. **General Provisions**
- The following provisions shall apply to SC structural elements: 2819
- (a) For exterior SC structural elements, the minimum section thickness, t_{sc} , shall 2821 2822 be 15 in. (380 mm). For interior SC structural elements, the minimum t_{sc} shall 2823 be 10 in. (250 mm).
- 2824 (b) Faceplates shall have a thickness, t_p , not less than 0.25 in. (6 mm) nor more than 2825 1.5 in. (38 mm).
- 2826 (c) The reinforcement ratio, ρ , shall have a minimum value of 0.015 and a 2827 maximum value of 0.10, where ρ is determined as follows:

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2828	$\rho = \frac{2t_p}{t_{sc}} \tag{A-N9-1}$
2829 2830 2831 2832 2833 2834 2835	 where tp = thickness of faceplate, in. (mm) tsc = SC section thickness, in. (mm) (d) The specified minimum yield stress of faceplates, Fy, shall not be less than 50 ksi (350 MPa) nor more than 80 ksi (550 MPa). The minimum elongation shall be at least 15%, and the minimum tensile-to-yield ratio, Fu/Fy, shall be 1.20.
2836 2837 2838	(e) The specified compressive strength of the concrete, f_c , shall not be less than the greater of 4 ksi (28 MPa) or $[0.04+0.80\rho]$ times F_y , nor more than 10 ksi (70 MPa).
2839	Lightweight concrete shall not be used.
2840 2841	(f) The faceplates of SC structural elements shall be nonslender, as specified in Section N9.1.3.
2842 2843 2844	(g) Composite action shall be provided between faceplates and concrete using shear connectors, in accordance with Section N9.1.4.
2845 2846 2847	(h) The opposite faceplates shall be tied to each other, in accordance with the tie requirements specified in Section N9.1.5.
2848 2849 2850	(i) For faceplates with holes, the nominal rupture strength per unit width, F_uA_{sn} , shall be greater than 1.10 times the nominal yield strength per unit width, F_yA_s ,
2851 2852 2853	where $A_s = \text{gross area of the faceplates per unit width, in.2/ft (mm2/m)}$ $A_{sn} = \text{net area of the faceplates per unit width, in.2/ft (mm2/m)}$
2854 2855 2856 2857 2858	User Note: The term faceplates with holes, used here, refers to faceplates that use tie configurations that involve threaded parts, which warrant the use of holes in faceplates to secure the tie and faceplate together. This is to be differentiated from the case where faceplates have openings or penetrations.
2859 2860	(j) Both faceplates shall have the same nominal thickness, t_p , and specified minimum yield stress, F_y .
2861 2862 2863 2864	 (k) Steel ribs, if used, shall be embedded into the concrete no more than the lesser of 6 in. (150 mm) or the embedment depth of the steel headed stud anchor minus 2 in. (50 mm). The ribs shall be welded to the faceplates and anchored in the concrete to develop the full yield strength of their directly connected elements.
2865	(1) Splices at the seams between adjoining faceplates shall be designed to develop
	Specification for Safety-Related Steel Structures for Nuclear Facilities

Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2867 2868	2.	Design Basis	
2869		For design purposes, SC structural elements shall be divided into an interior region	
2870 2871 2872		and connection regions. The connection regions shall consist of perimeter strips with a width not less than the SC section thickness, t_{sc} , and not more than twice the SC section thickness, $2t_{sc}$.	\wedge
2873 2874	2a.	Required Strength	\sim \sim
2875 2876 2877 2878		The required strength for SC structural elements and their connections shall be determined through an elastic finite element analysis for the applicable load combinations, except as stated in Section N10.3.4.	1.20
2879 2880 2881		User Note: As discussed in Section N10.3.4, a nonlinear inelastic dynamic analysis may be needed to determine the response of structures to impactive or impulsive loads.	
2882 2883 2884	2b.	Design for Stability	
2885 2886 2887 2888		Second-order analyses of structures with vertical SC structural elements need not be performed if the conditions of ACI 318 or ACI 318M, Section 6.2.5, are satisfied. Second-order effects shall be considered if the conditions of ACI 318 or ACI 318M, Section 6.2.5.1, are not satisfied.	
2889	3.	Faceplate Slenderness Requirement	
2890		Faceplates shall be anchored to concrete using shear connectors. The width-to-	
2891		thickness ratio of the faceplates, b/t_p , shall be limited as follows:	
2892			
2893		For connection regions,	
2894		$\frac{b}{t_p} \le 1.0 \sqrt{\frac{E_s}{F_y}} $ (A-N9-2a)	
2895		For interior regions,	
2896		$\frac{b}{t_p} \le 1.20 \sqrt{\frac{E_s}{F_y}} $ (A-N9-2b)	
2897		where	
2898		E_s = modulus of elasticity of steel	
2899		= 29,000 ksi (200 000 MPa) for carbon steel and duplex stainless steel	
2900		= 28,000 ksi (193 000 MPa) for austenitic stainless steel	
2901		F_y = specified minimum yield stress of faceplate, ksi (MPa)	

the nominal yield strength of the weaker of two connected faceplates.

2866

2902		b = largest unsupported length of the faceplate between rows of shear
2903		connectors, in. (mm)
2904		t_p = thickness of faceplate, in. (mm)
2905	4	Beguinements for Commonite Action
2906	4.	Requirements for Composite Action
2907	4a.	Classification of Shear Connectors
2908		
2909		Shear connectors with interfacial slip of at least 0.20 in. (5 mm), while maintaining
2910		an available strength greater than 90% of the peak shear strength, shall be classified
2911		as yielding shear connectors. Shear connectors not meeting this requirement shall
2912		be classified as nonyielding shear connectors.
2913		User Note: The above requirements, which are somewhat different than the
2914		requirements in Section I8.4 of the Specification, are appropriate and adequate for
2915		SC structural elements. This is because, unlike composite beams, SC structural
2916		elements are two-dimensional, and at approximately 2tsc, their associated
2917		development length is typically a lot smaller than half of a composite beam span
2918		(i.e. the typical development length for a composite beam).
2919		
2920		Steel headed stud anchors shall be classified as yielding shear connectors, and the
2921		available shear strength, Q_{cv} , shall be obtained using the <i>Specification</i> .
2922		Classification and available strength, Q_{cv} , for all other types of shear connectors
2923		shall be established through testing.
2725		shan be established through testing.
2924		User Note: Ties, ribs, and steel headed stud anchors serve as shear connectors that
2924		enable composite action. The requirements for steel headed stud anchors, which are
2926		a yielding type shear connector, are provided in <i>Specification</i> Sections I8.1 and
2927		18.3.
2928		10.5.
2929		Where a combination of yielding and nonyielding shear connectors is used, the
2929		resulting shear connector system shall be classified as nonyielding. In these cases,
2930		the strength of yielding shear connectors shall be taken as the strength
2931		corresponding to the displacement at which the nonyielding shear connectors reach
2932		their ultimate strength.
2955		
2934	4b.	Spacing of Shear Connectors
2935	ч л ,	Spacing of Shear Connectors
2935		Adjacent shear connectors shall be spaced not to exceed the minimum of the
2930		following:
2751		ionowing.
2938		(a) The spacing required to develop the yield strength of the faceplates over the
2939		development length, L_d , given as

$$s \le c_1 \sqrt{\frac{Q_{cv}^{avg} L_d}{T_p}}$$
(A-N9-3)

2940		$S \leq c_1 \sqrt{T_p}$ (A-109-3)
2941		where
2942		L_d = development length, in. (mm)
2943		$\leq 3t_{sc}$
2944		Q_{cv}^{avg} = weighted average of the available interfacial shear strengths of
2945		Q_{cv} weighted average of the available method shear strengths of shear connectors, kips (N)
2945		$T_p = F_v t_p \text{ (LRFD), kip/in. (N/mm)}$
2940		$=F_{ytp}/1.5 \text{ (ASD), kip/in. (N/mm)}$
2948		$c_1 = 1.0$ for yielding shear connectors
2949		= 0.7 for nonyielding shear connectors
2950		0.7 for non-yielding shear connectors
2750		User Note: The Q_{cv}^{avg} concept and its determination is illustrated in the
		Commentary for Section N9.3.6a(a).
2951		Commentary for Section 147.5.0a(a).
2952		(b) The spacing required to prevent interfacial shear failure before out-of-plane
2952		shear failure of the SC section, given as
2755		
		$Q_{cv}^{mg}l(0.9t_{sc}) = Q_{cv}^{mg}lt_{sc}$ Field Code Changed
2954		$\frac{s \le c_1}{M_n} \frac{\mathcal{Q}_{cv} \cdot \mathbf{I}_{(S,S_c)}}{M_n} s \le c_1 \frac{\mathcal{Q}_{cv} \cdot \mathbf{I}_{sc}}{M_n} $ (A-N9-4)
		$\overline{2.5t_{sc}}$ $\overline{2.5t_{sc}}$
2955		where
2956		M_n = nominal flexural strength per unit width of SC structural element, as
2957		defined in Section N9.3.3, kip-in./ft (N-mm/m)
2958		l = 12 in./ft (1000 mm/m)
2959		$t_{sc} = SC$ section thickness, in. (mm)
2960		
2961		User Note: Shear connector spacing will typically be governed by the requirement
2962		for the development length to be no more than three times the SC section thickness
2963		$(3t_{sc})$. However, for portions of the SC structure subjected to an extremely large
2964		out-of-plane moment gradient, the shear connector spacing is designed to achieve
2965		interfacial shear strength to be greater than $(M_n/2.5t_{sc})/(0.9t_{sc})$, which is a reasonable
2966		upper bound on interfacial shear demand because flexural behavior controls (in
2967		other words, because the shear span-to-depth ratio is greater than 2.5). See the
2968		Commentary for further explanation as well as for discussion of situations when
2969 2970		the shear span-to-depth ratio is smaller than 2.5.
	-	
2971	5.	Tie Requirements
2972		The opposite faceplates of SC structural elements shall be connected to each other
2972		using ties consisting of individual components such as structural shapes, frames, or
2974		bars.
2975		

2940

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2976User Note: Ties serve multiple purposes during empty module and service2977configurations of an SC structural element. The ties need to provide adequate2978strength and stiffness to empty modules during rigging/handling, transportation,2979and concrete placement operation. In the service condition, the ties provide2980structural integrity by enabling composite action, they prevent section splitting, and2981they serve as out-of-plane shear reinforcement. The out-of-plane shear strength2982contribution of the ties depends on the classification and spacing of the ties.

2983 5a. Classification of Ties

2985 Ties shall be classified as yielding shear reinforcement when

$$F_{ny} \le 0.85 F_{nr}$$

2987 where 2988 *F_{nr}*

2984

2989

2990

2991

2992

 F_{nr} = nominal rupture strength of the tie, or the nominal strength of the associated welded or threaded connection, whichever is smaller, kips (N) F_{nv} = nominal yield strength of the tie based on its gross area if no threads are

present, or on its root area if it is threaded, kips (N)

2993 Otherwise, ties shall be classified as nonyielding shear reinforcement.

2994User Note: For a tie with a stud welded connection to one of the faceplates2995conforming to AWS D1.1/D1.1M, the above check needs to be exercised only for2996the tie connection to the opposite faceplate.

2997 5b. Tie Spacing

2998 The tie spacing shall not exceed 1.0 times the section thickness, t_{sc} . The tie spacing-2999 to-faceplate thickness ratio, s_{tl}/t_p or s_{tl}/t_p , shall be limited as follows:

$$\frac{s_u}{t_p} \text{ or } \frac{s_u}{t_p} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}}$$
 (A-N9-6)

$$\frac{s_{tl}}{t_p} or \frac{s_{tt}}{t_p} \le 0.38 \sqrt{\frac{E_s}{2\alpha + 1}}$$
 (A-N9-6M)

3001 3002

3000

3003	where	
3004	$S_{tl} =$	= spacing of ties in the longitudinal direction, in. (mm)
3005	$S_{tt} =$	= spacing of ties in the transverse direction, in. (mm)
3006	$t_p =$	= thickness of the faceplate, in. (mm)
3007	$t_{sc} =$	= SC section thickness, in. (mm)
3008	α =	$= 1.7 \left[\frac{t_{sc}}{t_p} - 2 \right] \left[\frac{t_p}{D_{tie}} \right]^4$

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 90

(A-N9-5)

3012

3013

3014

3015

3016

3018

3021

3027

 D_{tie} = Equivalent diameter of shear reinforcement, in. (mm)

User Note: A tie may be a circular structural element (e.g., tie rod) or an assembly of several structural elements (e.g., tie bar with gusset plate at one or both ends). The effective diameter of non-round ties will be direction (orientation) dependent. For a noncircular structural element, its cross-sectional area, A_{tie} , can be used to calculate $D_{tie} = \sqrt{\frac{4A_{tie}}{\pi}}$.

3017 6. Design and Detailing Requirements for Impactive and Impulsive Loads

3019The analysis, design, and detailing of SC structural elements subject to impulsive3020and impactive loads shall be evaluated in accordance with Appendix N10.

3022 7. Design and Detailing Requirements for Openings

3023User Note: Faceplate holes for reinforcing steel dowels or for other types of joining3024instruments that are less than 2-1/2 in. (63 mm) in diameter, and $t_{sc}/8$, do not3025constitute as openings.

3026 7a. Design and Detailing Requirements for Small Openings

3028All openings other than those classified as large openings shall be treated as small3029openings. It is permitted to neglect the effect of small openings where the largest3030dimension is equal to or less than 6 in. (150 mm) and not exceeding 25% of the SC3031structural element thickness provided that Section N9.1.7a(b) detailing3032requirements (1), (2), and (3) are satisfied.

- 3033The following requirements apply to small openings with the largest dimension3034greater than the lesser of (1) 6 in. (150 mm) and (2) 25% of the SC structural3035element thickness.
- 3036At the boundary of small openings, detailing shall be provided to achieve either a3037free edge or a fully developed SC structural element. Openings with free-edge3038detailing at their boundary are permitted only within the interior regions. Design3039and detailing shall be as follows:
- 3040 (a) Design and detailing with a free edge at the perimeter of small openings
- 3041(1) Analysis is permitted to be performed without modeling the opening3042provided that the panel section where the opening is located shall be3043evaluated considering 25% reduction in all available strengths.3044Alternatively, the effect of a small opening shall be accounted for by

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3045 3046 3047 3048	 conducting an analysis that meets the Section N9.1.7b(a) requirements (1) and (2). (2) Reentrant corners of noncircular or non-oval openings shall have corner radii not less than four times the faceplate thickness.
3049 3050	(3) The first row of ties around the opening shall be located at a distance from the opening no greater than one-quarter of the SC section thickness, <i>t_{sc}</i> .
3051 3052 3053	(b) Design and detailing with fully developed edge at the perimeter of small openings
3054	Sections surrounding the opening are permitted to be designed using the
3055	required strength based on an analysis model that does not consider the opening,
3056	provided the following detailing requirements are satisfied:
3057	(1) Reentrant corners of noncircular or non-oval openings shall have corner
3058	radii not less than four times the faceplate thickness.
3059	(2) A steel sleeve shall be provided to span across the openings to the opposite
3060	faceplates. The sleeve nominal yield strength and thickness shall match or
3061	exceed the faceplate nominal yield strength and thickness, respectively. The
3062	sleeve shall be connected to both faceplates using CJP groove welds.
3063	(3) The steel sleeve shall be anchored into the surrounding concrete in
3064	accordance with the requirements of Section N9.1.3, where the width-to-
3065	thickness ratio is calculated using the sleeve thickness instead of the
3066	faceplate thickness.
3067	(4) On each face, a reinforcing flange, made from the same material as the
3068	section faceplate and extending beyond the opening perimeter by a distance
3069	equal to the section thickness for the interior region and half the section
3070	thickness for the connection region, shall be provided in one of the
3071	following ways:
3072	(i) In the form of a doubler plate, mounted outboard of the faceplate and
3073	with the same thickness as the faceplate, wherein the doubler plate shall be
3074	joined with the sleeve using a CJP groove weld around perimeter of the
3075	sleeve, and the doubler plate shall be joined with the faceplate using the
3076	maximum size fillet weld permitted by the Specification at its outer
3077	perimeter;
3078	
3079	(ii) In the form of an independent reinforcing plate, with thickness equal to
3080	at least 1.25 times the surrounding faceplate, which shall be joined using a
3081	CJP groove weld with the sleeve at its inner perimeter and with the
3082	surrounding faceplate at its outer perimeter. An additional fillet weld, with
	Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3083 3084		leg size equal to the difference between the thicknesses of the independent reinforcing plate and the surrounding faceplate, shall be provided at the
3085		outer perimeter of the reinforcing plate if the thickness difference is equal
3086		to or greater than $^{3}/_{16}$ in. (5 mm).
3080		to of greater than 716 m. (5 mm).
3088		
3089 3090 3091	7b.	Design and Detailing Requirements for Large Openings
3092		At the boundary of large openings, detailing is permitted to be provided to achieve
3093		either a free edge or a fully developed SC structural element. Design and detailing
3094		shall be as follows:
3095		
3096		(a) Design and detailing with free edge at the perimeter of large openings
3097		(1) The size of the opening modeled for analysis purposes shall be larger than
3098		the physical opening such that it extends to where the faceplates are fully
3099		developed away from the boundary of the opening.
3100		(2) No reductions shall be applied to the available strengths of the panel
3101		sections in the vicinity of the as-modeled opening.
3102		(3) Reentrant corners of noncircular or non-oval openings shall have corner
3103		radii not less than four times the faceplate thickness.
3104		(4) The first row of ties around the opening shall be located at a distance from
3105		the opening no greater than one-quarter of the SC section thickness, t_{sc} .
3106		
3107		(b) Design and detailing with fully developed edge at the perimeter of large
3108		openings
0100		opaning
3109		Fully developed SC structural elements around large openings shall be modeled
3110		and designed considering the physical boundary of the opening and shall follow
3111		the provisions for design and detailing with fully developed edge at the
3112		perimeter of small openings.
3113		User Note: Small openings are not modeled in the analysis. However, the
3114		prescriptive detailing requirements of this section will provide SC panel
3115		sections with adequate strength and reduced local stress concentrations around
3116		small openings. Large openings have additional modeling requirements as
3117 3118		discussed in Commentary Section N9.2.1 and should be detailed in accordance with Section N9.1.7b by taking into account the nature of boundary conditions
3119		provided around the opening.
3120		During its placement, the fresh concrete can exert significant hydrostatic
3121		pressure on the sleeves for large openings. Accordingly, the sleeves should be
3122		evaluated for the associated non-uniform radial pressure loading.
		Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3123	7c.	Design and Detailing Requirements for a Bank of Small Openings
3124		
3125		It is permitted to neglect the effect of a bank of small openings if each of them
3126		individually meets the relevant exemption and detailing requirements in Section
3127		N9.1.7a, and if the center-to-center spacing between all such small openings
3128		exceeds the SC structural element thickness. The following detailing requirements
3129		shall be followed when these requirements are not satisfied.
3130		(1) The region affected by a concentrated bank of small openings shall be treated
3131		as a large opening when the smallest clear distance between adjacent small
3132		openings is between t_{sc} and $2t_{sc}$ for the interior region and $0.5t_{sc}$ and $1.5t_{sc}$ for
3133		the connection region.
3134		(2) The bank of small openings shall be reinforced using a single reinforcing plate
3135		that:
3136		(a) incorporates all sleeves within the bank of openings;
3137		(b) meets the requirements of Section N9.1.7a(b); and
3138		(c) extends the minimum required distance beyond the perimeter of the
3139		outermost openings.
3140		If the longest and shortest dimensions of the bank of openings exceed $2t_{sc}$ and t_{sc} ,
3141		respectively, then it shall be analyzed per Section N9.1.7b as an equivalent large
3142		opening that circumscribes the outermost sleeves.
3143		$Q \rightarrow Q$
3144	N9.2.	ANALYSIS REQUIREMENTS
3145	1.	General Provisions
3146 3147		The following provisions shall apply to the analysis of SC structural elements.
3148		(a) SC structural elements shall be analyzed using elastic, three-dimensional,
3149		thick-shell, or solid finite elements.
3150		User Note: Guidance for finite element analysis or modeling, including the
3151		refined mesh around openings, are provided in the Commentary to this section.
3152		Section N9.1.7 provides modeling and detailing requirements for small
3153		openings and large openings.
3154 3155		(b) Second-order effects shall be addressed in accordance with Section N9.1.2b.
3155		(c) Finite element analyses involving accident thermal conditions shall be
3157		conducted in accordance with Section N9.2.4.
3158		(d) The viscous damping ratio for safe shutdown earthquake (SSE) level seismic
3159		analysis shall not exceed 5% for the determination of required strengths for SC
3160		structural elements.
3161		

3162 2. Effective Stiffness for Analysis

(a)

3163

3182

3183

3184

3185

3186

3187

3188

3189 3190

3191

3192

3193

3194 3195

3196

3197

3198

3199

3164 be determined as follows: $(EI)_{eff} = (E_s I_s + c_2 E_c I_c) \left(1 - \frac{\Delta T_{savg}}{150}\right) \ge E_s I_s$, kip-in.²/ft 3166 (A-N9-8) $(EI)_{eff} = (E_s I_s + c_2 E_c I_c) \left(1 - \frac{\Delta T_{savg}}{83}\right) \ge E_s I_s, (N-mm^2/m)$ 3167 (A-N9-8M) where 3168 = modulus of elasticity of concrete 3169 E_c $= w_c^{1.5} \sqrt{f_c}$, ksi (0.043 $w_c^{1.5} \sqrt{f_c}$, MPa) 3170 = moment of inertia of concrete infill per unit width I_c 3171 $= l(t_c^3/12)$, in.⁴/ft (mm⁴/m) 3172 = moment of inertia per unit width of faceplates (corresponding to 3173 I_s the condition when the concrete is fully cracked) 3174 $= lt_p(t_{sc}-t_p)^2/2$, in.⁴/ft (mm⁴/m) 3175 = calibration constant for determining effective flexural stiffness 3176 C2 $= 0.48 \rho' + 0.10$ 3177 = specified compressive strength of concrete, ksi (MPa 3178 f. = 12 in./ft (1000 mm/m)3179 = modular ratio of steel and concrete 3180 n 3181 E_s/E_c

The effective flexural stiffness for the analysis of SC structural elements shall

= concrete infill thickness, in. (mm) t_c = SC section thickness, in. (mm) t_{sc} = reinforcement ratio ρ $2t_p/t_{sc}$ = stiffness-adjusted reinforcement ratio ρ′ = ρn average of the maximum surface temperature increases for the $\Delta T_{savg} =$ faceplates due to accident thermal conditions, °F (°C) User Note: Equation A-N9-8 (A-N9-8M) is based on the stiffness of the cracked transformed section, including contributions of the faceplates and the cracked concrete infill. It also includes the reduction in flexural stiffness due to

additional concrete cracking resulting from thermal accident conditions. For operating thermal conditions, it is reasonable to assume no further reduction due to thermal effects, i.e., $\Delta T_{savg} = 0$, because the gradients are small and they develop over significant time.

(b) The effective in-plane shear stiffness per unit width, $(GA)_{eff}$, for all load combinations that do not involve accident thermal loading shall be based on

the required membrane in-plane shear strength per unit width, S_{rxy} , in the panel sections.

3200

3201

3202 (1) If $S_{rxy} \leq S_{cr}$ $(GA)_{eff} = (GA)_{uncr}$ 3203 $= G_s A_s + G_c A_c$ (A-N9-9) 3204 3205 where = area of concrete infill per unit width 3206 A_c $= lt_c, in.^2/ft (mm^2/m)$ 3207 3208 = gross area of faceplates per unit width A_s $= \tilde{l}(2t_p), \text{ in.}^2/\text{ft }(\text{mm}^2/\text{m})$ 3209 = shear modulus of concrete 3210 G_c $= 772\sqrt{f_c'}$, ksi (2000 $\sqrt{f_c'}$, MPa) 3211 = shear modulus of elasticity of steel 3212 G_s = 11,200 ksi (77 200 MPa) for carbon steel and duplex 3213 3214 stainless steel 3215 = 10,800 ksi (74 500 MPa) for austenitic stainless steel (GA)_{uncr}= in-plane shear stiffness per unit width of uncracked 3216 composite SC panel section, kip/ft (N/m) 3217 3218 $= G_s A_s + G_c A_c$ = required membrane in-plane shear strength per unit width in 3219 Srxy 3220 the panel section, kip/ft (N/m) = in-plane shear force per unit width at concrete cracking 3221 Scr 3222 threshold, kip/ft (N/m) 3223 0.063 3224 (A-N9-10) 3225 (A-N9-10M) 3226 = specified compressive strength of concrete, ksi (MPa) = 12 in./ft (1000 mm/m) 1 3227 3228 3229 (2) If S_{cr} $\frac{(GA)_{uncr} - (GA)_{cr}}{S_{cr}} \left(S_{rxy} - S_{cr} \right)$ (A-N9-11) 3230 3231 where $0.5\bar{p}^{-0.42}GA$ $(GA)_{cr} =$ 3232 (A-N9-12) 3233 $\bar{\rho}$ = strength-adjusted reinforcement ratio $A_s F_y$ 3234 (A-N9-13) $\overline{31.6A_c\sqrt{f_c'}}$

> Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

$$=\frac{A_s F_y}{83A_c \sqrt{f_c'}} \tag{A-N9-13M}$$

(3) If $S_{rxy} > 2S_{cr}$

- $(GA)_{eff} = (GA)_{cr} \tag{A-N9-14}$
- (c) The effective in-plane shear stiffness per unit width, $(GA)_{eff}$, for all load combinations involving accident thermal conditions shall account for the effects of concrete cracking by setting $(GA)_{eff}$ equal to $(GA)_{cr}$ determined using Equation A-N9-12.
- (d) SC structural element connections shall be classified as rigid or pinned for outof-plane moment transfer in accordance with Section N9.4.1 and modeled as per the classification.

3249 3. Geometric and Material Properties for Finite Element Analysis

Geometric and material properties of the SC structural elements shall be modeled in the elastic finite element analyses as follows:

- (a) The as-modeled poisson's ratio, v_m , thermal expansion coefficient, a_m , and thermal conductivity, k_m , used in the elastic finite element analysis of SC panel sections shall be taken as that of the concrete.
- (b) The as-modeled thickness of a SC panel section, t_m , and the material elastic modulus used in elastic finite element analysis of SC panel sections, E_m , shall be established through calibration to match the effective stiffness values for analysis, $(EI)_{eff}$ and $(GA)_{eff}$, defined in Section N9.2.2.
- (c) The as-modeled material density used in elastic finite element analysis of the SC panel sections, γ_m , shall be established through calibration after the model section thickness, t_m , has been matched to the mass of the SC section.
- (d) The as-modeled specific heat used in elastic finite element analysis of SC panel sections, c_m , shall be established through calibration after establishing density such that the model specific heat equals the specific heat of the concrete infill.
- 3266 4. Analyses Involving Normal Operating and Accident Thermal Conditions

3268 4a. Requirements for Normal Operating Thermal Conditions

- 3270 For normal operation or other long-term period exposure:
 - (a) The steel surface temperatures shall not exceed 180°F (82°C) except for local areas such as around penetrations, which are permitted to have increased temperatures not to exceed 230°F (110°C); and

3275	(b) The maximum strain in faceplates shall not exceed ε_y under normal thermal
3276	gradients.
3277	

3278 4b.

3279

3290

3294

3300

3301 3302

3303

3304

3305

Requirements for Accident Thermal Conditions

3280 For accident or any other short-term period exposure, the steel surface temperatures 3281 shall not exceed 570°F (300°C). Local areas are permitted to reach steel surface 3282 temperatures up to 800°F (430°C) from steam or water jets in the event of pipe 3283 failure. 3284

3285 Higher steel surface temperatures than those provided in this section are permitted 3286 if reduction in strength determined by testing or other rational criteria is applied to 3287 design. In addition, the engineer of record shall justify, by testing or other rational 3288 criteria, that increased temperatures do not cause deterioration of SC structural 3289 elements with or without the postulated loads.

Analyses for load combinations involving accident thermal conditions shall include 3291 3292 heat transfer analyses. The heat transfer analysis results shall be used to define 3293 thermal loading for the structural analyses.

3295 Heat transfer analyses shall be conducted using the geometric and material 3296 properties specified in Section N9.2.3 to estimate the temperature histories and 3297 through-section temperature profiles produced by the thermal accident conditions. 3298 These temperature histories and through section temperature profiles shall be 3299 considered in the structural finite element analyses.

The required out-of-plane flexural strengths per unit width, M_{rx} and M_{ry} , in the SC structural element interior regions caused by the thermal gradients shall not exceed M_{r-th} , where

$$M_{r,th} = (EI)_{eff} \left(\frac{\alpha_s \Delta T_{sg}}{t_{sc}} \right)$$
(A-N9-15)

3306	where
3307	$(EI)_{eff}$ = effective flexural stiffness for analysis of SC structural elements per
3308	unit width, kip-in. ² /ft (N-mm ² /m)
3309	α_s = thermal expansion coefficient of faceplate in °F ⁻¹ (°C ⁻¹)
3310	ΔT_{sg} = maximum temperature difference between faceplates due to accident
3311	thermal conditions in °F (°C)

3312 User Note: The M_{r-th} value in Equation A-N9-15 considers full flexural restraint 3313 and accounts for the relief from concrete cracking that limits the thermally induced moments. The analysis results for thermal loads may predict moments higher than 3314 M_{r-th} defined above if (a)it does not directly account for the self-limiting effect due 3315 3316 to concrete cracking, and/or (b) ΔT_{sg} is very large such that α_s times ΔT_{sg} exceeds the material yield strain. For the connection regions, the out-of-plane moment 3317

3318 3319		demands are determined by the finite element analyses, and the upper limit from Equation A-N9-15 does not apply.
3320	5.	Determination of Required Strengths
3321 3322 3323		In-plane membrane forces, out-of-plane moments, and out-of-plane shear forces shall be determined by an elastic finite element analysis.
3324 3325 3326 3327		The required strength for each load effect shall be calculated by averaging the load effect over panel sections that are no larger than twice the section thickness in length and width. In the vicinity of openings and penetrations, and in connection regions, the required strength shall be calculated by averaging the load effect over
3328 3329		panel sections no larger than the section thickness in length and width.
3330 3331		The required strengths for the panel sections of SC structural elements for each load effect shall be denoted as follows:
3332 3333		M_{rx} = required out-of-plane flexural strength per unit width in direction x, kip-in./ft (N-mm/m)
3334 3335		M_{ry} = required out-of-plane flexural strength per unit width in direction y, kip-in./ft (N-mm/m)
3336 3337		M_{rxy} = required twisting moment strength per unit width, kip-in./ft (N-mm/m)
3338 3339		S_{rx} = required membrane axial strength per unit width in direction x, kip/ft (N/m)
3340 3341		S_{ry} = required membrane axial strength per unit width in direction y, kip/ft (N/m)
3342 3343		S_{rxy} = required membrane in-plane shear strength per unit width, kip/ft (N/m)
3344 3345		V_{rx} = required out-of-plane shear strength per unit width along edge parallel to direction x, kip/ft (N/m)
3346 3347		V_{ry} = required out-of-plane shear strength per unit width along edge parallel to direction y, kip/ft (N/m)
3348 3349		x, y = local coordinate axes in the plane of the panel section associated with the finite element model
3350 3351	N9.3.	DESIGN OF SC STRUCTURAL ELEMENTS
3352 3353		The tensile strength contribution of concrete infill and the contribution of steel ribs to the available strengths of SC structural elements shall be neglected.
3354 3355	1.	Uniaxial Tensile Strength

3356The available uniaxial tensile strength per unit width of SC structural element panel3357sections shall be determined in accordance with Specification Chapter D. Where3358holes are present in faceplates, the available rupture strength shall be greater than3359the available yield strength.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2. 3361 **Compressive Strength**

3360

3362 The available compressive strength per unit width of SC structural element panel 3363 sections shall be determined in accordance with Specification Section I2.1b with 3364 the faceplates taking the place of the steel shape. 3365

3366 The terms listed below are used in addition to or as replacements of those used in 3367 the Specification Section I2.1b:

3366 3367	The terms listed below are used in addition to or as replacements of those used in the Specification Section I2.1b:	
3368	P_{no} = nominal compressive strength per unit width, kip/ft (N/m)	
3369	$= F_{y}A_{sn} + 0.85f_c'A_c $ (A-N9-16)	
3370	P_e = elastic critical buckling load per unit width, kip/ft (N/m)	
3371	$= \pi^2 (EI)_{eff} / L_c^2 \tag{A-N9-17}$	
3372	A_c = area of the concrete infill per unit width, in. ² /ft (mm ² /m)	
3373	$= lt_c, \text{ in.}^2/\text{ft} (\text{mm}^2/\text{m})$	
3374	A_{sn} = net area of faceplates per unit width, in. ² /ft (mm ² /m)	
3375	E_c = modulus of elasticity of concrete	
3376	$= w_c^{1.5} \sqrt{f_c'}, \text{ ksi } (0.043 w_c^{1.5} \sqrt{f_c'}, \text{ MPa})$	
3377	$(EI)_{eff}$ = effective SC stiffness per unit width for buckling evaluation,	
3378	kip-in. ² /ft (N-mm ² /m)	
3379	$= E_s I_s + 0.60 E_c I_c $ (A-N9-18)	
3380	I_c = moment of inertia of concrete infill per unit width	
3381	$= l_c^3/12$, in. ⁴ /ft (mm ⁴ /m)	
3382	I_s = moment of inertia per unit width of faceplates (corresponding to the	
3383	condition when concrete is fully cracked)	
3384	$= l \left[t_{p} \left(t_{sc} - t_{p} \right)^{2} / 2 \right], \text{ in.}^{4} / \text{ft} \left(\text{mm}^{4} / \text{m} \right)$	
3385	L_c = effective length of member, in. (mm)	
3386	f'_c = specified compressive strength of concrete, ksi (MPa)	
3387	l = 12 in./ft (1000 mm/m)	
3388		
3389	3. Out-of-Plane Flexural Strength	
3390	The design flexural strength, $\phi_b M_n$, and the allowable flexural strength, M_n / Ω_b , per	
3391	unit width of SC structural element panel sections shall be determined for the limit	
3392	state of yielding as follows:	
3393		
3394	$M_n = F_v(A_s^F)(t_{sc}) \tag{A-N9-19}$	
3395		
3396	$\phi_b = 0.90 \text{ (LRFD)} \qquad \Omega_b = 1.67 \text{ (ASD)}$	
2207	$\psi_b = 0.90 (LKTD)$ $22b = 1.07 (ASD)$	

where

3396 3397 3398

> Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

gross area of faceplate in tension due to flexure per unit width, in.²/ft $A_s^F =$ (mm^2/m) F_{y} = specified minimum yield stress of faceplate, ksi (MPa) t_{sc} = SC section thickness, in. (mm) **In-Plane Shear Strength** The design in-plane strength per unit width, $\phi_{vi}V_{ni}$, and the allowable in-plane shear strength per unit width, V_{ni}/Ω_{vi} , of panel sections shall be determined for the limit state of yielding of the faceplates as follows: $V_{ni} = \frac{K_s + K_{sc}}{\sqrt{3K_s^2 + K_{sc}^2}} A_s F_y \le A_s F_y$ (A-N9-20) $\Omega_{vi} = 1.67 \text{ (ASD)}$ $\phi_{vi} = 0.90 \text{ (LRFD)}$ where A_s = gross area of faceplates per unit width $= l(2t_p)$, in.²/ft (mm²/m) F_y = specified minimum yield stress of faceplates, ksi (MPa) V_{ni} = nominal in-plane shear strength per unit width of SC panel section, kip/ft (N/m) l = 12 in./ft (1000 mm/m) $K_s = G_s A_s$ $K_{sc} = \frac{0.7 \left(E_c A_c\right) \left(E_s A_s\right)}{4 E_s A_s + E_c A_c}$ **Out-of-Plane Shear Strength** The nominal out-of-plane shear strength per unit width shall be established by one of the following: (1) Project specific large-scale out-of-plane shear tests

- (2) Test results

3399

3400

3401 3402

3403 3404 3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417 3418

3419 3420

3421 3422

3423

3424

3425 3426 5.

4.

(3) The provisions of this section 3427 3428

3429 The design out-of-plane shear strength per unit width, $\phi_{vo}V_{no}$, and the allowable 3430 out-of-plane shear strength per unit width, V_{no}/Ω_{vo} , of panel sections shall be determined as follows: 3431

- 3432 ϕ_{vo} (LRFD) = 0.90 for SC panel sections with yielding ties, except when Section N9.3.5(b) applies and V_{conc} exceeds V_s 3433
- = 0.75 for all other cases 3434

3435	Ω_{vo} (ASD) = 1.67 for SC panel sections with yielding ties, except when
	Specification for Safety-Related Steel Structures for Nuclear Facilities
	Draft Dated May 2, 2024
	AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3436	Section 9.3.5(b) applies and V_{conc} exceeds V_s
3437	=2.00 for all other cases
3438	User Note: The classification of out-of-plane shear reinforcement (in the form of
3439	ties-namely, structural steel shapes, frames, or tie bars embedded in the concrete
3440	infill) as yielding shear reinforcement or nonyielding shear reinforcement should
3441	be done in accordance with Section N9.1.5a.
3442	(a) The nominal out-of-plane shear strength per unit width of SC panel sections,
3443	V_{no} , with shear reinforcement spacing no greater than half of the section
3444	thickness shall be calculated as follows:
	\land
3445	$V_{no} = V_{conc} + V_s \tag{A-N9-21}$
2446	
3446	where
3447	V_{conc} = nominal out-of-plane shear strength contributed by concrete per
3448	unit width of SC panel section, kip/ft (N/m)
3449	$= 0.063(f'_c)^{0.5} t_c l \tag{A-N9-22}$
3450	$= 0.166(f'_{c})^{0.5} t_{c} l \qquad (A-N9-22M)$
3451	V_s = nominal out-of-plane shear strength contributed by steel per unit
3452	width of SC panel section, kip/ft (N/m)
3453	$\xi(\frac{t_c}{s_{tl}})F_t\left(\frac{l}{s_{tt}}\right) $ (A-N9-23)
3454	F_{t} = nominal tensile strength of tie, kips (N)
3455	l = 12 in./ft (1000 mm/m)
3455	s_{tl} = spacing of shear reinforcement along the direction of one-way
3457	shear, in. (mm)
3458	s_{tt} = spacing of shear reinforcement transverse to the direction of one-
3459	way shear, in. (mm)
3460	t_c = concrete infill thickness, in. (mm) = $t_{sc} - 2t_p$, in. (mm)
3461	$\xi = 1.0$ for yielding shear reinforcement
3462	= 0.5 for nonyielding shear reinforcement
3463	
3464	User Note: The "nominal tensile strength" value is equal to: (1) F_yA_g for
3465	yielding shear reinforcement (i.e., when the tensile yielding limit state controls),
3466	and (2) F_{nr} for non-yielding shear reinforcement (i.e., when the tie rupture
3467	strength or its connection strength to the faceplate controls).
3468	
3468 3469	(b) The nominal out-of-plane shear strength per unit width of SC panels, V_{no} , with
3469 3470	(b) The nominal out-of-plane shear strength per unit width of SC panels, v_{no} , with shear reinforcement spaced greater than half the section thickness shall be the
3470	greater of V_{conc} and V_s . V_{conc} shall be calculated using Equation A-N9-22 or
3472	Equation A-N9-22M, and V_s shall be calculated using Equation A-N9-22, Equation A-N9-23,
2472	taking both ξ and (t/s) as 1.0

taking both ξ and (t_c/s_{tl}) as 1.0.

3473

3474	6.	Interaction Criteria for SC Structural Elements Subjected to Concurrent In-
3475		Plane and Out-of-Plane Forces

User Note: This section provides interaction equations for verifying the adequacy of SC structural elements subjected to concurrent forces due to individual load cases and specified load combinations. It is noted that the interaction equations are valid for load combinations involving both operating thermal and accident thermal load cases.

3483 6a. Interfacial Shear and Out-of-Plane Shear Forces

- 3485 The interaction of out-of-plane shear forces shall be limited by the following:
- 3486(a) If the required out-of-plane shear strength per unit width for both the x and y3487axes, V_{rx} and V_{ry} , is greater than the available out-of-plane shear strength3488contributed by the concrete per unit width of SC panel section, $V_{c \ conc}$, and the3489out-of-plane shear reinforcement is spaced no greater than half the section3490thickness:
- 3492 For nonyielding shear reinforcement:

3493
$$\left[\left(\frac{V_r - V_{c \ conc}}{V_c - V_{c \ conc}} \right)_x + \left(\frac{V_r - V_{c \ conc}}{V_c - V_c \ conc} \right)_y \right]^{\frac{5}{3}} + \left[\frac{\sqrt{V_{rx}^2 + V_{ry}^2}}{\Psi(IQ_{ry}^{\ ng}/s^2)} \right]^{\frac{5}{3}} \le 1.0 \quad (A-N9-24a)$$
3494

3495 For yielding shear reinforcement:

$$\left[\left(\frac{V_r - V_{c \ conc}}{V_c - V_{c \ conc}} \right)_x + \left(\frac{V_r - V_{c \ conc}}{V_c - V_{c \ conc}} \right)_y \right]^2 + \left[\frac{\sqrt{V_{rx}^2 + V_{ry}^2} / (0.9t_{sc})}{\Psi (lQ_{cy}^{\text{ag}}/s^2)} \right]^2 \le 1.0 \quad (A-N9-24b)$$

where

3500	Q_{v}^{ag} = weighted average of the available interfacial shear strengths of a
3501	group of shear connectors that accounts for tributary areas of
3502	each type of connector, kips (N)
3503	V_c = available out-of-plane shear strengths per unit width of SC panel
3504	section in local x (V_{cx}) and y (V_{cy}) directions, kip/ft (N/m)
3505	$V_{c \ conc}$ = available out-of-plane shear strength contributed by concrete per
3506	unit width of SC panel section, kip/ft (N/m)
3507	V_r = required out-of-plane shear strength per unit width of SC panel
3508	section in local $x(V_{rx})$ and $y(V_{ry})$ directions using LRFD or ASD
3509	load combinations, kip/ft (N/m)
3510	l = 12 in./ft (1000 mm/m)
	Specification for Safety-Related Steel Structures for Nuclear Facilities

Draft Dated May 2, 2024

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3511		s = spacing of shear connectors, in. (mm)
3512		t_{sc} = SC section thickness, in. (mm)
3513		x = subscript relating symbol to the local x-axis
3514		y = subscript relating symbol to the local y-axis
3515		Ψ = 1.0 for panel sections with yielding shear connectors
3516		= 0.5 for panel sections with nonyielding shear connectors
5510		0.5 for parter sections with non-fielding shoul connectors
3517		For design according to Specification Section B3.1 (LRFD)
3518		$V_c = \phi_{vo} V_{no}$, kip/ft (N/m), where V_{no} is calculated in accordance with
3519		Section N9.3.5
3520		$V_{c \ conc} = \phi_{vo} V_{conc}$, kip/ft (N/m), where V_{conc} is calculated in accordance with
3520		Section N9.3.5
3522		V_r = required out-of-plane shear strength per unit width of SC panel
3523		section in local x (V_{rx}) and y (V_{ry}) directions using LRFD load
3524		combinations, kip/ft (N/m)
3525		$\phi_{vo} = 0.75$
3526		φ ₁₀ 0.75
3520		For design according to Specification Section B3.2 (ASD)
3528		
3529		$V_c = V_{no}/\Omega_{vo}$, kip/ft (N/m), where V_{no} is calculated in accordance with
3530		Section N9.3.5
3531		$V_{c \ conc} = V_{conc} / \Omega_{vo}$, kip/ft (N/m), where V_{conc} is calculated in accordance
3532		with Section N9.3.5
3533		V_r = required out-of-plane shear strength per unit width of SC panel
3534		section in local x (V_{rx}) and y (V_{ry}) directions using ASD load
3535		combinations, kip/ft (N/m)
3536		$\Omega_{vo} = 2.00$
3537		
3538		(b) If the available strength, V_c , is governed by the steel contribution alone and the
3539		out-of-plane shear reinforcement is spaced greater than half the section
3540		thickness, $V_{c \ conc}$ shall be taken as zero in Equations A-N9-24a and A-N9-24b.
3541		
3542	0	
3543	6b.	In-Plane Membrane Forces and Out-of-Plane Moments
3544		
3545		The design adequacy of the panel sections subjected to the three in-plane required
3546		membrane strengths (Srx, Sry, Srxy) and three out-of-plane required flexural or
3547		twisting strengths $(M_{rx}, M_{ry}, M_{rxy})$ shall be evaluated for each notional half of the
3548		SC section that consists of one faceplate and half the concrete thickness.
3549		For each notional half, the interaction shall be limited by Equations A-N9-25 to A-
3550		N9-27. These equations shall be used with the maximum and minimum required
3551		principal in-plane strengths per unit width for the notional half of the SC panel
3552		section, $S_{r,max}$ and $S_{r,min}$, calculated using Equations A-N9-28 to A-N9-31.
3553		

(a) For
$$S_{r,max} + S_{r,min} \ge 0$$

$$\alpha\left(\frac{S_{r,max} + S_{r,min}}{2V_{ci}}\right) + \left(\frac{S_{r,max} - S_{r,min}}{2V_{ci}}\right) \le 1.0$$
(A-N9-25)

3558 (b) For $S_{r,max} > 0$ and $S_{r,max} + S_{r,min} < 0$ 3559

$$\frac{S_{r,max}}{V_{ci}} - \beta \left(\frac{S_{r,max} + S_{r,min}}{V_{ci}} \right) \le 1.0$$

3561 (c) For $S_{r,max} \leq 0$ and $S_{r,min} \leq 0$ 3562 3563

$$-\beta \left(\frac{S_{r,min}}{V_{ci}}\right) \le 1.0$$

3565 where
3566
$$\alpha = V_{ci}/T_{ci}$$

3567
$$\beta = V_{ci}/P_{ci}$$
 $S_{r,max}, S_{r,min}$
 $S'_{tx} + S'_{ty} + \left[\left(S'_{tx} - S'_{ty} \right)^2 \right] (c)$

 S'_{rx}

 S'_{ry}

3568
$$\frac{S'_{rx} + S'_{ry}}{2} \pm \sqrt{\left(\frac{S'_{rx} - S'_{ry}}{2}\right)^2 + \left(S'_{rxy}\right)^2}$$

=

=

$$3570 \qquad S'_{rx} = \frac{S_{rx}}{2} \pm \frac{M_{rx}}{j_x t_{sc}} \qquad (A-N9-29)$$

$$3571 \qquad S'_{ry} = \frac{S_{ry}}{2} \pm \frac{M_{ry}}{j_y t_{sc}} \qquad (A-N9-30)$$

$$3572 \qquad S'_{rxy} = \frac{S_{rxy}}{2} \pm \frac{M_{rxy}}{j_y t_{sc}} \qquad (A-N9-31)$$

$$3573 \qquad S'_{rxy} = required membrane axial strength per unit width in direction x for each notional half of SC panel section, kip/ft (N/m)$$

$$3575 \qquad S'_{ry} = required membrane axial strength per unit width in direction y for each notional half of SC panel section, kip/ft (N/m)$$

$$3576 \qquad S'_{rxy} = required membrane axial strength per unit width in direction y for each notional half of SC panel section, kip/ft (N/m)
$$3576 \qquad S'_{rxy} = required membrane in-plane shear strength per unit width for each notional half of SC panel section, kip/ft (N/m)
$$3578 \qquad garameter for distributing required flexural strength, M_{rx}, into the corresponding membrane force couples acting on each notional half of SC panel section
$$3580 \qquad = 0.9 \text{ if } S_{rx} \ge -0.6P_{no}$$

$$3584 \qquad j_y \qquad = parameter for distributing required flexural strength, M_{ry}, into the corresponding membrane force couples acting on each notional half of SC panel section
$$3584 \qquad j_y \qquad = parameter for distributing required flexural strength, M_{ry}, into the corresponding membrane force couples acting on each notional half of SC panel section
$$3584 \qquad j_y \qquad = parameter for distributing required flexural strength, M_{ry}, into the corresponding membrane force couples acting on each notional half of SC panel section
$$3586 \qquad = 0.67 \text{ if } S_{rx} \ge -0.6P_{no}$$$$$$$$$$$$$$

3587 $= 0.9 \text{ if } S_{ry} > -0.6P_{no}$

> Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

(A-N9-26)

(A-N9-27)

(A-N9-28)

(A-N9-29)

(A-N9-30)

3625		$\phi_{ci} = 0.80$
3626		$\phi_{ti} = 1.00$
3627		$\phi_{vs} = 0.95$
3628		
3629		For design according to Specification Section B3.2 (ASD)
3630		$P_{ci} = P_{no}/(2\Omega_{ci})$, kip/ft (N/m), where P_{no} is calculated using the nominal
3631		section compressive strength in accordance with Section N9.3.2
3632		$T_{ci} = T_{ni}/(2\Omega_{ti}), \text{kip/ft} (\text{N/m})$
3633		T_{ni} = nominal tensile strength per unit width of SC panel section determined
3634		in accordance with Section N9.3.1, kip/ft (N/m)
3635		$V_{ci} = V_{ni}/(2\Omega_{vs})$, kip/ft (N/m), where V_{ni} is calculated using the nominal in-
3636		plane shear strength in accordance with Section N9.3.4
3637		$\Omega_{ci} = 1.88$
3638		$\Omega_{ti} = 1.50$
3639		$\Omega_{\nu s} = 1.58$
3640		
3641		User Note: Use of the alternative interaction equations, A-N9-32, A-N9-33, and
3642		A-N9-34, may result in total interaction values that are negative; such instances
3643		should be interpreted as the element having satisfied the applicable interaction
3644		equation.
3645		
3646		
3647	7.	Strength of Composite Members in Combination with SC Structural
3648		Elements
3649		Composite members are permitted to be used in conjunction with SC structural
3650		elements. They shall be designed in accordance with Chapter NI.
3651	N9.4.	DESIGN OF SC STRUCTURAL ELEMENT CONNECTIONS
3652		This section addresses design requirements for connections involving SC structural
3653		elements, either with other SC structural elements or with reinforced concrete (RC)
3654		structural elements.
3655		X On the second se
3656		User Note: Examples of such connections include the following:
3657		(a) Co-planar splices between SC walls, SC slabs, or SC basemat sections;
3658		(b) Co-planar splices between SC walls, SC slabs, or SC basematand corresponding
3659		reinforced concrete (RC) elements;
3660		(c) Connections at the intersections of SC walls and SC slabs, and SC walls and
3661		SC basemats;
3662		(d) Connections at the intersection of SC and RC walls;
3663		(e) Anchorage of SC walls to RC basemats; and
3664		(f) Connections between SC walls and RC slabs.

3665 1. General Provisions

3666Splice connections shall be rigid for out-of-plane moment transfer. Wall-to-slab3667connections shall be rigid or pinned, consistent with the analysis model used.

3668Connectors shall consist of steel headed stud anchors, anchor rods, tie bars,3669reinforcing bars and dowels, post-tensioning bars, shear lugs, embedded steel3670shapes, welds and bolts, reinforcing steel mechanical couplers, and direct bearing3671in compression. Force transfer mechanisms involving connectors of the same type3672shall be provided for each type of connection interface force. Direct bond transfer3673between the faceplate and concrete shall not be considered as a valid connector or3674force transfer mechanism.

3675User Note: If more than one force transfer mechanism is possible, the one that3676provides the greatest strength is assumed to be the governing force transfer3677mechanism. For additional details and SC wall/slab connection design examples,3678refer to AISC Design Guide 32, Design of Modular Steel-Plate Composite Walls3679for Safety-Related Nuclear Facilities.

3680 1a. Required Strength

- 3681 The required strength for the connections shall be determined as:
- (a) 125% of the smaller of the corresponding nominal strengths of the connected
 parts, or
- 3684 (b) 200% of the required strength due to seismic loads plus 100% of the required
 3685 strength due to nonseismic loads (including thermal loads).

3686User Note: Connections designed for required strength as per option (a) develop3687the expected available strength of the weaker of the connected parts. Connections3688designed for required strength as per option (b) develop overstrength with respect3689to the connection design demands, while ensuring that ductile limit states govern3690the connection strength. Option (a) is preferred. Where option (a) is not practical,3691option (b) may be used.

3693 **1b.** Available Strength

3692

3694

3695The available strength shall be calculated using the applicable force transfer3696mechanism and the available strength of the connectors contributing to the force3697transfer mechanism. The available strength for connectors shall be determined as3698follows:

3699 (a) For steel headed stud anchors, the available strength shall be determined in
 accordance with *Specification* Section I8.3 with modifications in Chapter NI.

3701 (b) For welds and bolts, the available strength shall be determined in accordance

3702	with Chapter NJ.

- (c) For compression transfer via direct bearing on concrete, the available strength
 is determined in accordance with *Specification* Section I6.3a.
- (d) For shear friction load transfer mechanism, the available strength is determined
 in accordance with ACI 349 or ACI 349M, Section 11.7.
- (e) For embedded shear lugs and shapes, the available strength is determined in accordance with ACI 349 or ACI 349M, Appendix D.
- (f) For anchor rods, the available strength is determined from ACI 349 or ACI 349M, Appendix D.
- (g) For lap splices of reinforcing bars with faceplates, the available strength is
 determined as the yield strength of lapped reinforcing bars provided that the
 requirements of Section N9.4.2 are satisfied.

3714 2. Lap Splicing of Reinforcing Bars with Faceplates

- Lap splicing of reinforcing bars with SC section faceplates shall meet the followingrequirements:
- 3719 (a) Dowels larger than 1.4 in. (36 mm) diameter are not permitted for splices.
- (b) The embedment length of the dowels within the SC structural element shall be at least the lap splice length calculated per ACI 349 or ACI 349M.
- (c) If steel headed stud anchors are used, the dowels shall be located within the
 length of, and confined by, the steel headed stud anchors. The minimum spacing
 between the dowels to the closest faceplate shall be the dowel bar diameter.
 - (d) The available interfacial shear strength of the steel headed stud anchors along the dowel embedment length shall be greater than or equal to 125% of the nominal yield strength of the reinforcing steel.

3728

3725 3726

3727

3715

3718

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3729 Add the following Appendix.

3730

APPENDIX N10

3731 SPECIAL PROVISIONS FOR IMPACTIVE AND IMPULSIVE LOADS

3732

This appendix addresses the design, analysis, and detailing requirements for impactive and impulsive loads for structural steel elements, composite members (for example, composite beams and columns), and SC structural elements. The provisions of this appendix apply to those structural elements directly affected by the impactive and impulsive loads. Because of their differing behavior characteristics, separate sections are provided in this appendix

3738 for structural steel, composite members, and steel plate, and for SC structural elements.

User Note: Examples of impactive loads include tornado-generated missiles, whipping
pipes, aircraft missiles (this can be either design-basis or beyond design-basis load), fuel
cask drop and other internal and external missiles.

Examples of impulsive loads include jet impingement, blast pressure, compartment
pressurization and pipe-whip restraint reactions (in terms of how such reactions affect the
structure that supports the impacted structural element).

- 3745 The appendix is organized as follows:
- 3746 N10.1. General Provisions
- N10.2. Analysis, Design, and Detailing of Structural Steel, Composite
 Members, and Steel Plate
- 3749 N10.3. Analysis, Design, and Detailing of SC Structural Elements
- 3750

3753

3756

3751 N10.1. GENERAL PROVISIONS

3752 1. Additional Material Requirements

Additional material requirements for structural elements subjected to impactive andimpulsive loadings shall be as follows:

- (a) The specification of the material of those structures or structural elements that are subjected to impactive and/or impulsive loads shall comply with Section NA3.1.
 Welds subject to impactive and/or impulsive loads shall comply with Section NJ2.6.
- (b) Bolts and threaded parts shall be in accordance with Section NJ3.14.
- 3762 (c) The structural documents and specifications shall meet Section NA4.
- 3763

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3764 2. Dynamic Strength Increase3765

It is permitted to consider strain rate-adjusted material strengths for structural steel,
reinforcing steel, and concrete materials. The material strength increase shall be based
on applicable experimental data. The Dynamic Increase Factors (DIF) specified in
Table A-N10.1.1 are permitted for use in the absence of experimental data.

- 3770
 3771 In case of elastic response, the DIF value shall be limited to 1.0 for all materials if the
 3772 calculated dynamic load factor for the impactive or impulsive loading is less than 1.2.
- 3773

	ABLE A-N10.1.1 Increase Factors	(DIF)
Material	D	IF
Material	Yield Strength	Ultimate Strength
Structural steel shapes	1.10	1.05
Carbon steel plate	1.20	1.10
Stainless steel plate	1.10	1.05
Reinforcing steel		
Grade 60 (420 MPa)	1.10	1.05
Grade 80 (550 MPa)	1.10	1.05
Concrete compressive strength	NA	1.25
Concrete shear strength	NA	1.10
NA = not applicable		

3774

3775 User Note: The DIF values in Table A-N10.1.1 are conservatively adopted from NEI 07-

3776 13, Methodology for Performing Aircraft Impact Assessments for New Plant Designs,3777 Revision 8P.

S/// Revision or

3778 3. Load Effects and Load Combinations3779

- For each applicable load combination, the required strength or ductility of the affected
 structural elements for the impactive and impulsive loads shall be determined by
 considering all other applicable concurrently acting loads.
- 3783 3784

N10.2. ANALYSIS, DESIGN, AND DETAILING OF STRUCTURAL STEEL, COMPOSITE MEMBERS, AND STEEL PLATE

3787 1. Compactness Requirements

3788

3789For structural steel elements and composite members subject to flexure or compression3790due to impactive and impulsive load, the limiting width-to-thickness ratios of their3791compression elements shall not exceed the limiting values, λ_c , provided in Table A-3792N10.2.1. The R_y values necessary for determination of λ_c in Table A-N10.2.1 shall be

3793 obtained from Table A3.2 in the *Seismic Provisions*.

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Structural elements in flexure only, or combined flexure and compression, shall
conform to the lateral bracing requirements of *Specification* Appendix 1, Section
1.3.2c.

3799 **2. Local Response Evaluation**

3794

3800

3804

3808

3812

3814

3819

3824 3825

3826

3827

3828 3829

For impactive and impulsive targets consisting of steel plate, the required minimum
 thickness to prevent perforation under impactive loads shall be checked using project specific test data or published formulas developed from validated test data.

Local response evaluation of composite members subjected to impactive loads shall be
 based on project-specific test data or published formulas developed from validated test
 data.

User Note: For nuclear safety-related applications, local response evaluation for
 impulsive loads is not required because the characteristics of the applicable impulsive
 loads are such that they cannot cause perforation.

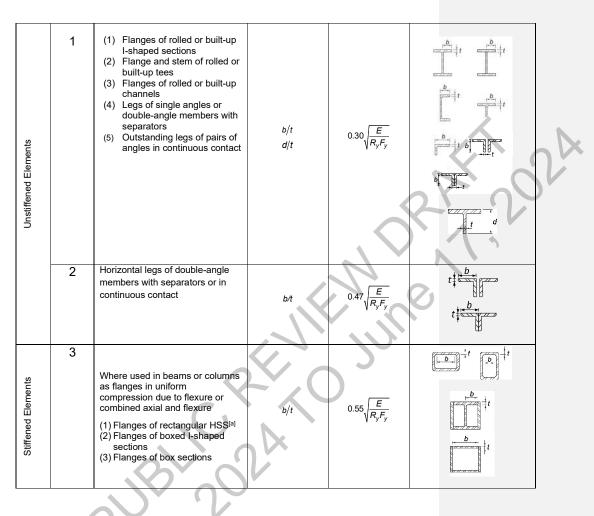
3813 **3.** Special Design and Detailing Requirements for Ductility

Design of structural steel elements and composite members for impactive and
impulsive loads shall follow the material requirements of *Seismic Provisions* Section
A3, and the general member and connection requirements of *Seismic Provisions*Sections D1 and D2 for highly ductile members, respectively.

3820 4. Analysis Requirements for Verification of Structural Element Ductility

It is permitted to determine the load effects for impactive or impulsive forces using
 inelastic analysis. Design adequacy of structural elements subjected to these load
 effects shall be assessed by using one of the following three methods:

- (a) If the target response remains elastic, the dynamic load effects of the impulsive or impactive loads shall be calculated using the applicable dynamic load factor (DLF). The calculated maximum elastic required strengths using this method shall not exceed the available strengths defined in Chapters ND to NJ.
- 3830(b) If the target response is in the inelastic range, use of a simplified single-degree-of-3831freedom analysis of the target, using either a bilinear or multi-linear resistance3832function, is permitted. The calculated maximum ductility ratio using this method,3833defined below as μ_r , shall not exceed the applicable permissible ductility ratio, μ_p ,3834provided in Table A-N10.2.2.
- 3835 The required ductility ratio, μ_r , shall be calculated as follows:


3836 $\mu_r = \frac{D_m}{D_y}$ (A-N10-1)
Specification for Safety-Related Steel Structures for Nuclear Facilities

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3837	where
3838	D_m = maximum deflection from analysis, in. (mm)
3839	D_{y} = effective yield deflection, in. (mm)
3840	
3841	The acceptance criteria for composite members shall be based on project-specific
3842	test data or applicable published analytical methods developed from validated test
3843	data.
3844	
3845	(c) Alternatively, if the target response is in the inelastic range, use of a detailed
3846	nonlinear and inelastic finite element analysis is permitted for direct determination
3847	of maximum strains. The calculated maximum plastic tensile strain using this
3848	method shall not exceed 0.03 in./in. (mm/mm).
3849	
3850	User Note: Analysis and design of structural elements subjected to impactive or
3851	impulsive loads requires subject matter expertise. In particular, implementation of
3852	option (c) is more involved because it requires accurate determination of the
3853	structural element's stress-strain curve and its maximum response. Peer review by
3854	independent subject matter expert(s) is recommended if option (c) is implemented.
3855	
3856	The method per option (b) is easier to implement because it involves a simplified
3857	bilinear (or multilinear) resistance function of the structural element's load-
3858	displacement behavior that is based on an equivalent single-degree-of-freedom
3859	model (accordingly, the permissible ductility ratios in Table A-N10.2.2 have been
3860	conservatively specified). This method is based on similar provisions in UFC 3-
3861	340-03 (DOD, 2008), which requires determination of the structural element's
3862	resistance function by using its nominal yield strength times the dynamic increase
3863	factor and applicable strain-hardening effect. As defined and illustrated in UFC 3-
3864	340-02 (DOD, 2008), the effective yield point is taken as the intersection point of
3865	the line representing the initial equivalent stiffness with the horizontal line
3866	representing the plastic behavior (see commentary for further discussion). The
3867	associated effective yield displacement is used for implementation of option (b).
3868	
3869	For all methods, the associated connections shall be designed such that their
3870	available strengths including the dynamic increase factor are greater than R_{y} times
3871	the nominal strength for LRFD and $R_{\rm y}/1.5$ times the nominal strength for ASD of
3872	the connected structural element, where the R_{y} value corresponds to the material
3873	used in the connected structural element and is obtained from <i>Seismic Provisions</i>
3874	Table A3.2.
3875	

Limitin	TA g Width-to-Thickness Ratio	BLE A-N10.2.1 s for Structural		oosite Members
Case	Description of Element	Width-to- Thickness Ratio	Limiting Width- to-Thickness Ratio λ _c	Examples

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

> Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

	Case	Description of Element	Width-to- Thickness	Limiting Width-to- Thickness Ratio	Examples
			Ratio	λς	
	4	Where used in beams, columns, or links, as webs in flexure, or combined axial and flexure			
ents		 Side plates of boxed I-shaped sections Webs of rectangular HSS^[a] Webs of box sections Webs of rolled or built-up I- shaped sections and channels 	h/t	$1.56\sqrt{\frac{E}{R_yF_y}}$	
Stiffened Elements					
	5	Walls of round HSS ^[a]			
		Q	D/t	$0.038 \frac{E}{R_y F_y}$	
	6	C			
nts		Flanges and webs of filled rectangular	b/t	$1.4\sqrt{\frac{E}{DE}}$	
Composite Elements		HSS and box sections ^[a]	h/t	<i>\Υyγ</i> y	
Compo	7	Walls of filled round HSS sections ^(a)	D/t	$0.076 \frac{E}{R_y F_y}$	
		^[a] The design wall thickness shall structural sections (HSS), as de			vall thickness of hollow

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 115

3878

TABLE A-N10.2.2 Permissible Ductility Ratio, µp, for Design of Structural Elements Subjected to Impactive or Impulsive Loads

Limit State	Permissible Ductility Ratio		
Tension ^[a]	$\mu_{\text{P}} \leq 0.25 ~\epsilon_{\text{u}}/\epsilon_{\text{y}} \leq 0.1/\epsilon_{\text{y}} ~^{[b]}$		
Flexure ^{[a],[c]}			
Steel plates	$\mu_{P} \leq 20$		
Open sections such as W, S, and WT	$\mu_p \leq 10$		
Closed sections such as pipe and box section	$\mu_{P} \leq 20$		
structural elements where shear governs design	$\mu_{P} \leq 5$		
Compression (applicable when $F_e \ge 4.5F_v$)	$\mu_{p} = 0.225/(F_{y}/F_{e}) \le \varepsilon_{st}/\varepsilon_{y}$		
compression (applicable when r e 2 4.5r y)	not to exceed 10 ^[d]		
^[a] For net sections with ductile behavior, the plastic resistance shall be based on yielding of the net section. For net sections with either brittle or limited ductile behavior, the structural element's plastic resistance shall be based on yielding of the gross section provided that the net section's tensile rupture based available strength exceeds its gross section's yielding based available strength.			
	using the value corresponding to an 8-inlong (200		
^[c] Accompanying compression force, if any, shall be less that	an the smaller of $0.1F_{o}A_{g}$ and $0.1F_{y}A_{g}$.		

^[d] $F_e = \pi^2 E/(L_c/r)^2$; ε_{st} = strain corresponding to the onset of strain hardening using the value corresponding to an 8-in.-long (200 mm) tensile coupon specimen

3881

3888

N10.3. ANALYSIS, DESIGN, AND DETAILING OF SC STRUCTURAL 3882 3883 **ELEMENTS**

3884 1. Compactness Requirements 3885

3886 The boundary region compactness requirements of Appendix N9, Section N9.1.3, shall 3887 be satisfied.

2. Local Response Evaluation 3889

3890 The minimum required perforation thickness for SC structural elements subjected to 3891 impactive loads shall be determined using project-specific test data or applicable 3892 published analytical methods developed from validated test data. In lieu of specific 3893 3894 test data or published methods, the minimum required faceplate thickness, $t_{p,min}$, shall 3895 be determined as follows: 3896

$$t_{p,min} = 0.066 \left| \frac{V_1}{d^2} \right|$$

 $t_{p,n}$

$$t_{p,min} = 0.066 \left[\frac{V_r^2}{d^2 \sigma_r} \left(\frac{W_p + W_{cf}}{g} \right) \right], \text{ in.}$$
 (A-N10-2)

$$u_{nin} = 458 \left[\frac{V_r^2}{d^2 \sigma_r} \left(\frac{W_p + W_{cf}}{g} \right) \right], \text{ mm}$$
 (A-N10-2M)

3900

3899

3898

Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

× 202

3901 where, 3902 V_r = residual velocity of a missile passing through concrete, ft/s (m/s) $= \sqrt{\left(\frac{W_p}{W_p + W_{cf}}\right)} \left(V_i^2 - V_p^2\right)$ 3903 (A-N10-3) = initial (pre-impact) velocity of missile, ft/s (m/s) 3904 V_i = perforation velocity for reinforced concrete section of same thickness, 3905 V_p 3906 per NEI 07-13, ft/s (m/s) $\left|\frac{d}{1.44K_p W_p N K_{psc}^2}\right| 2.2 \pm \sqrt{4.84 - 1.2 \left(\frac{t_c}{\alpha_p d}\right)^2} \right| \quad \text{when } \frac{t_c}{\alpha_p d} \le 2.65$ =1,000d(A-N10-3907 3908 4a) $=1,000d\left|\frac{d}{4K_nW_nNK_{psc}^2}\right|$ $\left(\frac{t_c}{1.29\alpha}\right)$ -0.53 when 2.65 < (A-N10-4b) < 3.27 3909 when $\frac{t_c}{\alpha_p d} \ge 3.27$ $\frac{d}{K_n W_n N K_{nsc}} \left| \frac{t_c}{1.29 \alpha_n d} - (0.53 + K_{psc}) \right|$ 3910 =1,000d(A-N10-4c) when $\frac{t_c}{\alpha_p d} \le 2.65$ (A-N10-4aM) = 3.724a 3911 when 2.65 < t_c 3912 < 3.27 (A-N10-4bM) = 2.10d).53 when $\frac{t_c}{\alpha_p d}$ 3913 (A-N10-4cM) = 4.56 (0.53 +≥ 3.27 1.29α = strength-dependent concrete penetrability factor 3914 K_p $=5.692 \sqrt{f_c}$ 3915 (A-N10-5) =14.95/ 3916 (A-N10-5M) 3917 K_{psc} =penetration depth modification factor for SC cross section $= 2.073 - 0.661K_p + 0.688 \left(\frac{\alpha_p d}{t_c}\right) + 0.835 \left(\frac{x_c}{t_c}\right)$ (A-N10-6) 3918 = missile nose shape factor per the modified NDRC formula 3919 N = 0.72 for flat-nosed missiles 3920 3921 = 0.84 for blunt-nosed missiles 3922 = 1.00 for spherical-nosed missiles Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3923		= 1.14 for sharp-nosed missiles	
3924 3925	W _{cf}	= weight of the concrete frustum (plug) associated with x_{sc} , depth, of the impacting missile, lb (N)	the penetration
3926	W_p	= missile weight, lb (N)	
3927		$= \frac{1}{3} \pi \left(\frac{\rho_c}{12^3} \right) (t_c - x_{sc}) (r_2^2 + r_1 r_2 + r_1^2) \text{ when } x_{sc} < t_c$	(A-N10-7a)
3928		$= \frac{1}{3} \pi \left(\frac{g \rho_c}{10^9} \right) (t_c - x_{sc}) \left(r_2^2 + r_1 r_2 + r_1^2 \right) \text{ when } x_{sc} < t_c$	(A-N10-7aM)
3929		$= 0$ when $x_{sc} \ge t_c$	(A-N10-7b)
3930			0
3931	d	= effective diameter of the missile, in. (mm)	
3932	f_{c}'	= compressive strength of concrete, ksi (MPa)	\sim
3933	g	= acceleration due to gravity, in./s ² (m/s ²)	
3934		$= 386 \text{ in./s}^2 (9.81 \text{ m/s}^2)$	
3935	r_1	= effective radius of the missile, in. (mm)	
3936	r_2	= concrete frustum radius at the inside face of the back face	eplate, in. (mm)
3937		$=\eta + (t_c - x_{sc}) \tan \theta$ when $x_{sc} < t_c$	(A-N10-8a)
3938		$= 0$ when $x_{sc} \ge t_c$	(A-N10-8b)
3939	t_c	= concrete infill thickness, in. (mm)	
3940 3941	x_c	= concrete penetration depth for the reinforced concrete sect thickness as the SC cross section, in. (mm)	tion of the same
3942		$= \sqrt{4K_p N W_p d \left(\frac{V_i}{1,000d}\right)^{1.80}} \text{ when } \frac{x_c}{d} \le 2.0$	(A-N10-9a)
3943		$=K_p N W_p \left(\frac{V_i}{1,000d}\right)^{1.80} + d \text{ when } \frac{x_c}{d} > 2.0$	(A-N10-9b)
3944		$= 0.511 \sqrt{K_p N W_p d \left(\frac{V_i}{d}\right)^{1.80}} \text{ when } \frac{x_c}{d} \le 2.0$ $= 0.0652 K_p N W_p \left(\frac{V_i}{d}\right)^{1.80} + d \text{ when } \frac{x_c}{d} > 2.0$	(A-N10-9aM)
3945		= $0.0652K_p NW_p \left(\frac{V_i}{d}\right)^{1.80} + d$ when $\frac{x_c}{d} > 2.0$	(A-N10-9bM)
3946	x_{sc}	= missile penetration depth into the SC cross section, in. (n	nm)
3947		$=K_{psc}x_{c}$	(A-N10-10)
3948	α_p	= missile deformability factor per NEI 07-13	
3949		= 0.60 for deformable missiles	
		Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION	

3950			= 1.00 for rigid m	issiles		
3951		θ	= inclination angl	e of the concrete frustur	n	
3952			45°		(A-N10-11)
3932			$=\frac{1}{\left(t_c/d\right)^{1/3}}$		(2	A-N10-11)
3953		ρ _c	= concrete density	/, lb/ft ³ (kg/m ³)		
3954 3955		σ_r	= equivalent radia Mises yield crite	al compressive stress in erion, ksi (MPa)	the rear faceplate, bas	sed on von
3956			$= 5.1F_y + 101$ who	en $t_p \ge 0.25$ in.	(A	-N10-12a)
3957			$= 3.9F_y + 64$ when	n $t_p < 0.25$ in.	(A	-N10-12b)
3958			$= 5.1F_y + 696$ who	en $t_p \ge 6 \text{ mm}$	(A-N	110-12aM)
3959			$= 3.9F_y + 441$ who	en $t_p < 6 \text{ mm}$	(A-N	110-12bM)
3960 3961 3962	3.	_		d Detailing Requireme		
3963 3964 3965		following	conditions is presen	accordance with Sectio t:	n N10.3.4(c) when er	ther of the
3966 3967 3968			opening(s), or opening(s) with free	edge at the opening par	rameter	
		should be	e provided to spare a ibed in Section N10	and practical, an indeper an SC structural element .3.3 from being directly	t with either condition	(a) or
3969 3970 3971 3972		state does reinforcen	s not control. Exce	ion faceplate are permitt pt for the case of sho opening, welded attachr	op welding associated nents to the tension fa	l with the ceplate are
3973 3974 3975			tted_ <u>in regions that</u> impulsive or impacti	are expected to undergo ive loading.	yielding when subje	<u>cted to the</u>
3976 3977 3978 3979		plane shea	ar strength shall be a	nent are permitted. Add t least 120% of the out- controlled failure mecha	of-plane shear strength	
		N10.3.3 of load will than the s	ensures that the SC sundergo significant	shear strength requirem structural element subje inelastic response throu ctile failure mechanism	cted to impactive or in 1gh flexural yielding, 1	npulsive ather
3980 3981	4.	Analysis l	-	Verification of Structur	•	
				<i>ty-Related Steel Structures fo</i> Draft Dated May 2, 2024 JSTITUTE OF STEEL CON		

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3982The response of SC structural elements subjected to impactive and impulsive loads3983shall be determined by one of the following three methods:

- (a) If the target response remains elastic, the dynamic load effects of the impulsive
 or impactive loads shall be calculated using the applicable dynamic load factor
 (DLF). The calculated maximum elastic demands using this method shall not
 exceed the capacities defined in Appendix N9, Section N9.3.
- (b) If the target response is in the inelastic range, use of a simplified single-degreeof-freedom analysis of the target, using either bilinear or multi-linear resistance
 function, is permitted. The presence of concurrent membrane forces, if any,
 shall be accounted for when developing the resistance function. The calculated
 maximum support rotation using this method shall not exceed 6-deg (0.105
 rad).
- (c) Alternatively, if the target response is in the inelastic range, use of a detailed nonlinear and inelastic finite element analysis is permitted for direct determination of plastic strains. The maximum plastic strain using this method shall not exceed 0.05 in./in. (mm/mm) for the faceplates and 0.005 in./in.
 (mm/mm) for ties classified as yielding shear reinforcement.
- User Note: Analysis and design of SC structural elements subjected to impactive or
 impulsive loads requires subject matter expertise. In particular, implementation of
 option (c) is more involved because it requires accurate determination of the structural
 element's stress-strain curve and its maximum response. Peer review by independent
 subject matter expert(s) is recommended if option (c) is implemented.

4004

4017

4020

The method per option (b) is easier to implement because it involves a simplified 4005 bilinear (or multilinear) resistance function of the structural element's load-4006 displacement behavior that is based on equivalent single-degree-of-freedom model 4007 (accordingly, the permissible plastic rotation limit has been conservatively specified). 4008 This method is based on similar provisions in UFC 3-340-02 (DOD, 2008), which 4009 requires determination of the structural element's resistance function by using its 4010 nominal yield strength times the dynamic increase factor and applicable strain-4011 4012 hardening effect. As defined and illustrated in UFC 3-340-02 (DOD, 2008), the 4013 effective yield point is taken as the intersection point of the line representing the initial equivalent stiffness with the horizontal line representing the plastic behavior (see 4014 4015 commentary for further discussion). The associated effective yield displacement is used 4016 for implementation of option (b).

4018SC basemats subjected to impulsive or impactive loads shall be evaluated using4019option (c).

4021 For all methods, the associated connections shall be designed such that their available 4022 strengths are greater than R_y times the nominal strength for LRFD and $R_y/1.5$ times the 4023 nominal strength for ASD of the connected structural element, where the R_y value 4024 corresponds to the material used in the connected structural element and is obtained 4025 from *Seismic Provisions* Table A3.2.

> Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

> Specification for Safety-Related Steel Structures for Nuclear Facilities Draft Dated May 2, 2024 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

RUBL202A