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INTRODUCTION
Section E3 in the AISC LRFD Specification (Ref. 1) states that

*Singly symmetric and unsymmetric columns, such as angle or tee-shaped
columns, and. .... may require consideration of the limit states of
flexural-torsional and torsional buckling.®

This requirement demands a fairly complicated procedure for the design of a
common structural element which had been designed previously by the much
simpler method of flexural buckling.

This paper demonstrates on the basis of analysis snd experiment that
many angle-columns can be designed as before by the method of minor axis
buckling, and that the present AISC procedure ylelds conservative results for
shorter columns. It is also shown that the Q-factor method, which accounts
for local buckling of the outstanding legs of the angles, can be replaced by
an effective width approach which unifies the process of how stiffened and
unstiffened elements are designed (see Ref. 2). Finally an LRFD procedure is
presented for the design of axially loaded angle columns.

ELASTIC BUCKLING

Flexural-torsional buckling involves both lateral translation and
twisting of the cross section. For an unsymmetric shape, such as an unequal-
leg single-angle column, the two modes of flexural buckling (i.e., about the z
and u axes, see Fig. 1)
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and the mode of torsional buckling
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are totally coupled through the cubic equation
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For a singly symmetric section, such as an equal-leg single-angle or a

double -angle column, Eq. 1 decouples because the shear center coordinate

z, = 0. In the case of double symmetry, such as for starred-angle columns,
all three equations decouple since both z, = 0 and u, = 0. Equations 1, 2 and
3 are taken from Appendix E3 of the AISC LRFD Specification (Ref, 1), and the
various parameters are identified in the nomenclature at the end of this

paper.
The non-dimensional relationships between P,, P, , P, and p,, and the

slenderness parameter
A L(_g]‘ )
(3

are illustrated in Fig. 2 for an equal-leg single-angle simply supported
column with a plate slenderness ratio D/t = 12, Also shown on the plot i{s the
elastic plate-buckling load
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For short columns the elastic plate buckling load controls, while for long
columns flexural buckling about the z-axis controls. Flexural-torsional
buckling governs in the intermediate slenderness range.

INELASTIC BUCKLING

An examination of Fig. 2 shows that for the particular example of D/t -
12, the coupling action takes place well above the yield point of the steel.
For a realistic assessment therefore it is necessary to consider inelastic
behavior. A thorough study of this problem was made by Kitipornchai and Lee
(Ref. 3) i{n 1986, using the finite element method. The AISC LFRD
Specification (Ref. 1, Appendix EJ) uses the tangent-modulus approach where
the inelastic buckling load P, is determined from Eq. 4 by replacing P, by P,,
and P, P, P, by P, P, P,. respectively, where

Pig = Pyer b
Pl- - !u' (.)
Py = Py %)

The tangent modulus ratio r = E,/E, and it i{s based on the tangent modulus
implied in the LRFD column curve in Sec. E2 of Ref. 1 (Ref. 4):




r==2,389 p In(p) for 0.39 s p = 1.00 (10a)
r=0.877 for0sp<0.39 (10b)
vhere p = P /P, (1)

Inelastic column curves based on this approach are shown in Figs. 3, &
and 5 for equal-leg (Fig. 3) and unequal-leg (Fig. 4) single-angles and
double-angles (Fig. 5). Curves are shown for flexural buckling about the
minor axis (FB) and for flexural-torsional buckling (FTB) where the yield
stress is not affected by plate local buckling (Q = 1) and where the yield
stress ls reduced to QF,, as required in the AISC LRFD Specification.

Flexural buckling is always calculated with QFy. From these figures it can be
seen that there {s a substantial reduction from flexural strength due to
flexural-torsional buckling.

The tangent modulus approach as discussed above assumes that the elastic
modulus E and the shear modulus G vary as r In the inelastic range. This
assumption is a conservative one (Refs. 5 through 8), and it has been argued
that the shear modulus G does not change at all when the member is yielded in
compression an instant just prior to buckling. Equation 9 then can be

expressed as
- IIIPC‘ +« GJ 1 (12)
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The effect of this modification is evident in the column curves of Figs. 6
through 10. These curves are typical representatives of all angle columns.
From Figs. 6 and 7, and from other similar plots of other single angles, it is
evident that flexural-torsional buckling (FTB) strength, when computed on the
basis of an undiminished shear modulus G, is not likely to govern. In Fig. 9
we see that if r, < 2y then FTB will never control; however, Figs. 8 and 10
indicate that minor axis buckling is not always governing. (Compare curves
FB(Q)(x - x) and FTB, G, = G in Fig. 8, and FB(Q)(y - y) and FTB, G, = G in
Fig. 10). There are substantial n.l.cml where FTB governs and (t must,
therefore, be checked for . This check can be made by a
simpler method than that nl:_nndnd by AISC in Ref. 1, e.g.,:

P, = MIN(P,,,P,) (13)

where P, is the x - x axis buckling load as determined by the AISC column
curve (including a modification for local buckling), and
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where P, 1s the y - y sxis buckling load as determined by the AISC
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column curve (excluding a modification for local buckling), and
Py, = GI/r2 (15)

LOCAL BUCKLING MODIFICATION

The AISC LRFD Specification accounts for the local buckling of
unstiffened slender plate elements by using the Q-factor, where

Q = Fy/F, (16)

Fjp being the critical local buckling stress which is modified for some
inelastic behavior. Q is defined in Appendix B5 in Ref. 1 for several cases,
e.g. single-angles, outstanding flanges of W-shapes and stems of T-shapes.

Web plate elements are stiffened elements and these are treated by the
"effective width method.” The AISI Specification for cold-formed steel
structures (Ref. 2) has adopted a unified effective width approach which is
applied to elements with both stiffened and unstiffened plate elements. Since
AISI and AISC have different definitions of the flat width the former starting
from the toe of the fillet and the latter using overall dimensions, the values
of the coefficients are slightly different. Following are the formulas for
the AISC version of the effective width formula:

b, = sb an
where
p=1fori, <077 (18a)
r E - _,_°'1’75]&] for 4, > 0.77 (18b)
A - 1.17&][&]‘ (19)
f=F, (20)

where F, is the critical stress for the column for the whole cross section and
k = 0.425 is the plate buckling coefficient for an angle. The method of
determining the nominal column capacity is as follows:

Step 1: Calculate A, = TI;'EE].
Step 2: Determine F, by Ref.’l, Sec. E2.

F, = 0.658" F, for A, 5 1.5
0.877
Fow 2oy fora > 1.5
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Step 3: Calculate b, using Eq. 17 for each leg of the angle.
Step 4: Determine the effective area A,
A, =A-[(b,-b) + (4, -d)]t
where b, and d, are the effective widths of the legs
with total widths b and d, respectively.
Step 5: Calculate P, = A,F,

Figures 11 and 12 are typical plots showing parisons bety the Q-
factor and the effective area methods. For unequal-leg angles the Q-factor
method gives generally lower strength, while the reverse tends to be the case
for equal-leg angle columns. While there is no clear advantage of one over
the other approach, the effective area method will unify the treatment of
stiffened and unstiffened plate elements.

COMPARISON WITH TESTS

There are two sets of carefully conducted axfally loaded recent column
tests available, i.e., the tests of John B. Kennedy and Madugula K.S. Murty
(Ref. 9) and S. Kitipornchai and H.W. Lee (Ref. 10). Single-angle, double-
angle and T-columns with pinned and fixed ends were tested. The histograms of
Figs. 13 and 14 show the test-to-prediction ratios for the current AISC-LRFD
method (Fig. 13) and the effective area method (Fig. 14).

The probabilistically determined reliability index § variation with the
nominal live load-to-dead load ratio is shown in Figs. 15 and 16 for
resistance factors ¢ = 0.85 and 0.90, respectively.

SUMMARY

This paper has shown that the current (1991) method of designing angle
columns by the AISC LRFD Specification is conservative and more complicated
than necessary. A simpler and less conservative method of angle-column design
was presented,
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NOMENCLATURE

r - tangent modulus ratio

v - Poisson's ratio

A - cross sectional area

A, - effective area

b, - effective width

[ - warping constant

D - angle leg dimension

E - modulus of elasticicy

| A - buckling stress

8 - yleld stress

G - shear modulus

H - 1 -ut/r?

b S S moments of {nertia about the z and y axis

J - torsion constant

k - plate-buckling coefficient

8 - column length

By - nominal column capacity

e - u? + 22 + (I, + I)/A

g Ty = radil of gyraction
- angle thickness

Uy, 2y = shear center coordinates
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Fig.2

EQUAL-LEG SINGLE ANGLES
ELASTIC BUCKLING Fy=50 ksi, Dt=12
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Fig.3 AISC Angle—~Column Design Criteria, LRFD Specs. APPENDIX E3

FTB: Flexural-Torsional Buckiing

Q: FTB with Q—foctor

Qu1: FTB without Q~factor

FB(Q): Flaxural Buckling with Q—factor
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Fig.8 AISC LRFD Citeria Compared to Tangent Modulus Solution
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Fig.B8 AISC Compared to Tangent Modulus
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Fig.9 ASC Compared to Tangent Modulus

Fig.10 AISC Compared to Tangent Modulus



Fig.11

SINGLE-ANGLE COLUMNS
Q_factor & eff.area methods compared
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Fig.12

SINGLE-ANGLE COLUMNS
Q_factor & eff.area methods compared
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