

STRUCTURAL STEEL DESIGN TIPS

Quick Estimates and Rules of Thumb for Architecture Students

VVZ4^55 IS		
24 in. deep		
and weighs	•	
55 lb/ft of	•	
member	•	
		F
length.	:	e

longer span*

W/2/ x 55 is

BAY LAYOUT

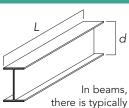
Plan and structural diagram options for the same building outline can create exciting options in architectural expression, especially if steel is exposed.

Beam (framing to transfer floor load to girder)

> Girder (a beam that transfers the load of several beams to columns)

Column (vertical support that transfers girder loads to the foundation)

Girder or Beam • • • • •


Joist or Truss ····· (framing that transfers floor loads to a girder or primary beam)

*The most efficient and economical bays have a 1:1.25-1.5 width proportion and an area of 750–1,250 ft² with infill beams spanning the long direction to have closer girder and beam depths. Spacing should consider the type of deck and spans. (Ruby, p. 15)

BEAM DEPTHS

W-shape beam depth estimate

Beam	½ in. depth (d) per foot of span (L), so 30 ft span means 15 in. beam depth (W16)	ſ
	Use above estimate, but round up one size (W18)	
Roof Purlin	Use above estimate for beams, but round down one size (W14)	≜ more

spacing

e vertical depth than width

System	Typ. Span Range	Spacing	Typ. Shapes
Steel Girder	20–40 ft	_	W12–W30
Steel Beam	25–45 ft	10–15 ft	W12–W24
Open Web Joist	10–60 ft	2–5 ft	_
Steel Truss	40–300 ft	10–20 ft	_
Roof Purlins	Per truss spacing	Each truss node	_
Space Frame	80–300 ft	Typ. modules are 4 ft, 5 ft, 8 ft, 12 ft	
	· · · · · · · · · · · · · · · · · · ·	(C.O. & Z. p. 243), (I &	R, p. 3), and (A & I, p. 42

backspan cantilever

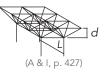
CANTILEVERS

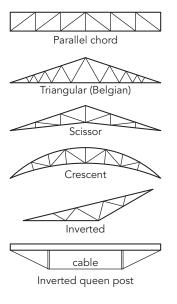
Cantilevers are typically $\frac{1}{3}$ the length of the backspan. Longer cantilevers require deeper, heavier structure for strength and servicability.

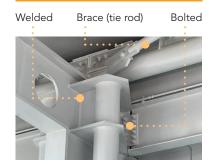
TRUSSES

Appropriate for long spans (>50 ft)

Truss depth estimates


triangular or arched 3-4 in. depth (d) per foot of span (L)


rectangular 1-11/2 in. depth (d) per foot of span (L)


space truss 1 in. depth (d) per foot of span (L)

Some truss examples

CONNECTIONS

Lateral, tension, and compression forces must travel from beams, braces, and columns down to foundations through connections.

COLUMNS

W-Shapes (Wide-flange)

Column Size Estimates (larger		
numbers mean larger columns)		
One-story:	W6, W8, W10	
Low-to-mid-rise:	W8, W10, W12	
High-rise:	W12, W14	
.	(Dulau and 15, 15	

(Ruby, pp 15–17) W-shape columns typically have square

_____ proportions in plan.

HSS (Hollow Structural Sections) Column Size Estimates (the number

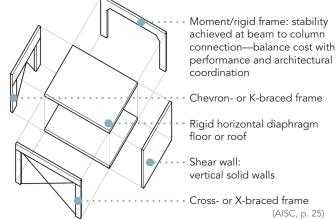
refers to the external dimension) One-story: HSS4, HSS6 Low-rise: HSS8, HSS10

Columns can be custom-designed for architectural expression.

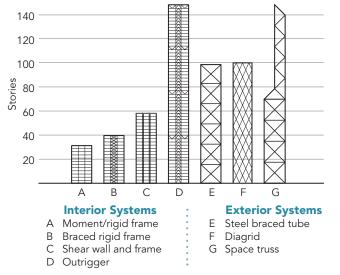
MISCELLANEOUS TIPS

Other common structural steel

shapes used for elements like lateral bracing, stair stringers, girts, and trusses:



Steel Decking Depth Estimates


Steel roof decking	1½ in.
depth without	and
concrete	3 in. typ.
Composite floor	1½–3 in. deck
deck with poured	plus 2–4 in.
concrete depth	concrete

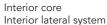
LATERAL SYSTEMS

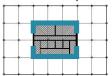
Common types of lateral bracing systems that go the height of the building:

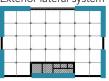
Options for Tall Steel Lateral Systems

References

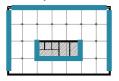
- AISC. (2019). Designing with Structural Steel: A Guide for Architects, American Institute of Steel Construction.
- Allen, E. and Iano, J. (2013). Fundamentals of Building Construction: Materials and
- Methods. (6th ed.). John Wiley & Sons, Inc. Ching, F., Onouye, B., & Zuberbuhler, D. (2009). Building Structures Illustrated: Patterns, Systems and Design (1st ed.). John Wiley & Sons, Inc.
- Ioannides, S. & Ruddy, J. (2000).
- "Rules of Thumb for Steel Design." Modern Steel Construction, February
- Ruby, D. (2008). Design Guide 23: Constructability of Structural Steel Buildings.
- American Institute of Steel Construction.


These estimates and rules of thumb are for preliminary design estimates only using the most common elements; actual conditions may result in refined solutions. Layout and sizing need to be verified by a licensed professional through structural analysis.


For more information and conceptual and technical assistance, please visit **aisc.org/solutions**. To download additional copies visit **aisc.org/archeducation**.


Integrate **lateral**

systems into the plan with other solid elements like exit stairs, bathrooms, storage, and elevator or mechanical shafts:


Exterior core Exterior lateral system

Exterior cores

or later	al system
+ + +	
	or later

Interior core Exterior and interior lateral system

U.S. structural steel contains 93–98% recycled steel scrap when produced by electric arc furnaces (EAF).

Additional Resources

Allen, E. and Iano, J. (2012). The Architect's Studio Companion: Rules of Thumb for Preliminary Design. John Wiley & Sons, Inc.
Ambrose, J. & Tripeny, P. (2012). Building Structures (3rd ed.). John Wiley & Sons, Inc.
Ambrose, J. & Tripeny, P. (2016). Simplified Engineering for Architects and Builders (12th ed.). John Wiley & Sons, Inc.
Ching, F. (2008). Building Construction Illustrated (4th ed.). John Wiley & Sons, Inc.