



















![](_page_3_Picture_3.jpeg)

![](_page_3_Picture_4.jpeg)

![](_page_4_Figure_2.jpeg)

![](_page_4_Picture_3.jpeg)

![](_page_4_Picture_4.jpeg)

![](_page_5_Picture_2.jpeg)

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

![](_page_6_Figure_2.jpeg)

![](_page_6_Figure_3.jpeg)

![](_page_6_Picture_4.jpeg)

![](_page_7_Picture_2.jpeg)

![](_page_7_Picture_3.jpeg)

![](_page_7_Picture_4.jpeg)

![](_page_8_Figure_2.jpeg)

![](_page_8_Figure_3.jpeg)

![](_page_8_Picture_4.jpeg)

![](_page_9_Figure_2.jpeg)

![](_page_9_Figure_3.jpeg)

![](_page_9_Picture_4.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

![](_page_10_Picture_4.jpeg)

![](_page_11_Picture_2.jpeg)

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_12_Figure_3.jpeg)

![](_page_12_Picture_4.jpeg)

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_3.jpeg)

![](_page_13_Picture_4.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

![](_page_14_Picture_4.jpeg)

![](_page_15_Figure_2.jpeg)

|                 | Recycled<br>Content | Recapture<br>Rate |
|-----------------|---------------------|-------------------|
| Carbon Steel    |                     |                   |
| Sheet/strip     | 25-35 **            | 70                |
| Structural      | ≤90 **              | 98                |
| Stainless Steel | 70 - 90**           | 92*               |
| Zinc            | 23 **               | 33                |
| Copper          |                     |                   |
| Electrical wire | 0 *                 | >90               |
| Other products  | 70 – 95 *           | >90               |
| Aluminum        |                     |                   |
| Sheet           | 0 *                 | 70                |
| Extrusions      | Varies *            | 70                |
| Castings        | ≤100 *              | 70                |

![](_page_15_Picture_4.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

![](_page_16_Picture_4.jpeg)

![](_page_17_Figure_2.jpeg)

| Chemistry & C<br>(Nominal Chemic        | Corros         | sion<br>nposit | Resi<br>ion, W | stanc<br>/t. Pct.) | e    |
|-----------------------------------------|----------------|----------------|----------------|--------------------|------|
|                                         | Cr             | Ni             | Мо             | Ν                  | PREn |
| Martensitic 630/17-4PH                  | 15             | 3              |                |                    | 15   |
| Austenitic 304/304L                     | 18             | 9              |                | 0.06               | 18   |
| Duplex 2304                             | 23             | 4.8            | 0.3            | 0.1                | 24.5 |
| Austenitic 316/316L                     | 17.5           | 11             | 2              | 0.06               | 25   |
| Duplex LDX 2101                         | 21.5           | 1.5            | 0.3            | 0.22               | 26   |
| Duplex 2205                             | 22             | 5              | 3              | 0.15               | 35   |
| Duplex 2507                             | 25             | 7              | 4              | 0.28               | 43   |
| PREn (Pitting Resis<br>%Cr + 3.3(%Mo) + | tance<br>16(%N | Equiva<br>)    | alent r        | number             | ·) = |
|                                         |                |                |                |                    | 36   |

![](_page_17_Picture_4.jpeg)

![](_page_18_Figure_2.jpeg)

| Average Annual Corrosion Rate (mm/yr) |                    |                   |          |         |
|---------------------------------------|--------------------|-------------------|----------|---------|
| Metal                                 | Severe<br>Marine** | Severe<br>Marine* | Marine** | Rural*  |
| Туре 316                              | 0.0003             | 0.0001            | 0.00003  | 0.00003 |
| Туре 304                              | 0.0004             | 0.0001            | 0.00008  | 0.00003 |
| Туре 430                              | 0.002              | 0.0006            | 0.0004   | 0.00003 |
| AI 3003                               | 0.019              | 0.005             | 0.005    | 0.00028 |
| Copper                                | 0.025              | 0.04              | 0.009    | 0.00559 |
| Zinc                                  | 0.111              | NA                | 0.023    | 0.0033  |
| Cor-Ten                               | 0.810              | 1.15              | 0.212    | 0.0229  |
| Mild Steel                            | 2.190              | 0.846             | 0.371    | 0.0432  |

![](_page_18_Picture_4.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_3.jpeg)

![](_page_19_Picture_4.jpeg)

| City           | Pollution<br>Level | Suspended<br>Particulate<br>µgm/m <sup>3</sup> | Sulfur<br>Dioxide<br>µgm/m <sup>3</sup> |
|----------------|--------------------|------------------------------------------------|-----------------------------------------|
| Rio de Janeiro | High               | 139                                            | 129                                     |
| Beijing        | High               | 377                                            | 90                                      |
| Calcutta       | High               | 375                                            | 49                                      |
| Moscow         | High               | 100                                            | 109                                     |
| Tokyo          | Moderate           | 49                                             | 18                                      |
| New York       | Moderate           | 27                                             | 26                                      |
| Chicago        | Moderate           | 35                                             | 14                                      |
| Stockholm      | Low                | 9                                              | 5                                       |
| Paris          | Low                | 14                                             | 14                                      |

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

![](_page_24_Figure_2.jpeg)

Dubai Beach Site Corrosion Rates Predict Perforation - Standing Seam Roof Example

| Metal              | Corrosion Rate<br>Dubai Coastal<br>Inch/year | SMACNA<br>Thickness<br>Inch | Time To<br>Perforation,<br>Yrs |
|--------------------|----------------------------------------------|-----------------------------|--------------------------------|
| 2205 Duplex*       | 0                                            | 0.015                       | 50+                            |
| Galvanized steel** | 0.02                                         | 0.024                       | 2.2                            |
| Aluminum           | 0.002                                        | 0.032                       | 16                             |
| Zinc***            | 0.035                                        | 0.028                       | Less than 1                    |
| Copper             | 0.004                                        | 0.022                       | 5.5                            |

Type 304/316 guidance was used. Lighter gage maybe possible.
 \*\* A G140 coating (0.001 inch) was assumed to have delayed carbon steel

corrosion by 1 year based on zinc corrosion rates, this may not be accurate. \*\*\* Zinc thickness for a double rolled standing seam per Rheinzink

Applications in Architecture

50

![](_page_25_Picture_2.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)

| Soil E                                                                                                                                                            | Environments                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Most corrosive <ul> <li>Low pH, high chle</li> <li>Stray currents can a</li> <li>Aluminum and carbo</li> <li>Cast iron can provid</li> </ul> </li> </ul> | oride & sulfide levels, poor drainage<br>occelerate corrosion<br>on steel are not suitable<br>e reasonable life – low/no chlorides |
| Stainless Steels                                                                                                                                                  | Soil Environment                                                                                                                   |
| Austenitic 304, 316<br>Duplex 2304                                                                                                                                | Cl < 500 ppm,<br>resistivity > 1,000 Ω-cm, pH > 4.5                                                                                |
| Austenitic 316,<br>duplex 2304, 2205                                                                                                                              | Cl < 1,500 ppm,<br>resistivity > 1,000 Ω-cm, pH > 4.5                                                                              |
| austenitic 6% Mo alloys<br>duplex 2507                                                                                                                            | Cl < 6,000 ppm,<br>resistivity > 500 Ω-cm, pH > 4.5                                                                                |
|                                                                                                                                                                   | 53                                                                                                                                 |

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

![](_page_27_Picture_4.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_28_Picture_3.jpeg)

![](_page_28_Picture_4.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_29_Picture_4.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_32_Picture_3.jpeg)

![](_page_32_Picture_4.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_4.jpeg)

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

![](_page_34_Picture_4.jpeg)

![](_page_35_Figure_2.jpeg)

![](_page_35_Picture_3.jpeg)

![](_page_35_Picture_4.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_37_Figure_2.jpeg)

| Metal           | Thermal<br>Expansion | Thermal<br>Conductivity |  |
|-----------------|----------------------|-------------------------|--|
| Type<br>304/316 | 16.9                 | 0.16                    |  |
| 2205            | 13                   | 0.23                    |  |
| Carbon steel    | 12                   | 0.54                    |  |
| Alloy 400       | 13.9                 | 0.26                    |  |
| Copper          | 16.9                 | 3.86                    |  |
| AA 3003         | 23.2                 | 2.04                    |  |

![](_page_37_Picture_4.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_4.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_39_Picture_3.jpeg)

![](_page_39_Picture_4.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_40_Figure_3.jpeg)

![](_page_40_Picture_4.jpeg)

![](_page_41_Figure_2.jpeg)

![](_page_41_Picture_3.jpeg)

![](_page_41_Picture_4.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_42_Picture_3.jpeg)

![](_page_42_Picture_4.jpeg)

![](_page_43_Figure_2.jpeg)

![](_page_43_Picture_3.jpeg)

![](_page_43_Picture_4.jpeg)

![](_page_44_Figure_2.jpeg)

![](_page_44_Picture_3.jpeg)

![](_page_44_Picture_4.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

![](_page_46_Picture_2.jpeg)

![](_page_46_Picture_3.jpeg)

![](_page_46_Picture_4.jpeg)

![](_page_47_Figure_2.jpeg)

![](_page_47_Picture_3.jpeg)

![](_page_47_Picture_4.jpeg)

![](_page_48_Picture_2.jpeg)

![](_page_48_Picture_3.jpeg)

![](_page_48_Picture_4.jpeg)

![](_page_49_Picture_2.jpeg)

![](_page_49_Picture_3.jpeg)

![](_page_49_Picture_4.jpeg)

![](_page_50_Picture_2.jpeg)

![](_page_50_Picture_3.jpeg)