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Abstract 

The present paper investigates the resistance of stainless steel open sections as influenced by 
local stability issues. In particular, the influence of a rounded stress-strain law with large strain 
hardening effects on the buckling response of sections is studied. Several structural stainless 
steel grades are considered, as well as various section shapes under either compression or 
major-axis bending moment. The interaction between yielding and buckling is seen to be 
strongly influenced by individual element stability. Eventually, suitable design equations are 
proposed. 

1 Introduction 

The present paper relates to the behaviour, resistance and design of stainless steel open sections 
under simple loading, i.e. under either simple compression or under major-axis bending. 
Sections considered in the following are assumed fabricated by welding three stainless steel 
plates together, leading to doubly-symmetric sections. 

More precisely, the main goal of this article consists in characterizing the key factors 
influencing the resistance of such sections to the most common and frequently-met types of 
loading. Of particular relevance is the influence of beneficial strain hardening effects, as well 
as the effects of premature local buckling; specific attention was therefore paid to quantify their 
impact on section resistance, eventually leading to the proposal of new, adequate design 
equations. 

Although less frequently used than regular carbon steel, stainless steel has seen an increasing 
use in structural applications, mostly due to its durability, corrosion resistance, ease of 
maintenance aesthetics and fire resistance (Ashraf, 2006). In terms of resistance to compression 
and to bending, stainless steel open sections have recently received increased attention – in a 
non-exhaustive manner, one may cite the works of Ashraf (2006, 2006b), Afshan (2013), 
Gardner (2006, 2008), Young (2003, 2005), Real (2005) or Theofanous (2010). Among these 
works, the development of the Continuous Strength Method (C.S.M., Gardner, 2008) certainly 
stands as a corner stone within this topic, through its original strain-based approach that is 
particularly well suited to take the best advantage of the strain hardening reserves stemming 
from the rounded shape of the material stress-strain response. Consecutive to such research 
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investigations, major design codes now include sections specifically devoted to the design of 
stainless steel sections (AISC 2010, EN1993-1-4 2006, AS 4100 1998). 

Besides, recent years have seen the development of a new, alternative design approach to steel 
sections and members: the Overall Interaction Concept (O.I.C., Boissonnade 2017, Hayeck 
2018, Li 2017, Nseir 2015, Boissonnade 2014). Among other features, the O.I.C. (i) abandons 
the discrete and artificial cross-section classification concept, (ii) does not make use of the 
Effective Width Method, (iii) proposes a single, mechanically-based concept for the design of 
both sections and members, and (iv) allows all cross-section shapes (open or closed) to be 
treated similarly – the design procedures shall only differ in locally calibrated coefficients. 
Further, the concept clearly opens the door to computer-assisted design, since key R-ratios – see 
Fig. 1 and Fig. 8 – can nowadays be calculated by numerical tools. 

The basic O.I.C. design principles are illustrated on Fig. 1. The actual loading on the section 
being known, one determines a relative slenderness rel from a plastic load ratio Rpl (Step 1) 
and a critical load ratio Rcr (Step 2); this rel value is then used to deduce a buckling factor  
(“penalty factor”) from a suitable “buckling curve” (Step 4).  aims at accounting for a 
reduction on the plastic resistance owing to buckling effects – at the cross-section level in the 
present paper. The final design check (Step 5) consists in verifying that the reduced load ratio 
Rb still remains higher than unity, i.e. the loading acting on the section ought to be increased to 
exceed available resistance. In its principle, this approach is very similar to many recent design 
recommendations for member buckling. 

 
Figure 1: Basic principles and application steps of the O.I.C. 

The O.I.C. can be seen as a major improvement brought to structural engineers and designers 
since, further to the above-listed advantages, it was shown to lead to a more economic design 
(Nseir 2015, Hayeck 2016). The present paper further extends the O.I.C. to the case of stainless 
steel sections, for which the material response is characterized by no plastic plateau and by 
significant strain hardening reserves. These particularities can be easily implemented in an 
O.I.C.-type approach in keeping a reference to plastic resistance through the conventional 0.2% 
material proof stress 0.2 while allowing for resistances higher than the plastic capacity through 
allowing for L > 1.0 values. 

In this respect, numerical investigations were undertaken so as to provide O.I.C.-based design 
equations to predict the resistance of open stainless steel sections under simple loading. Next 
section 2 details the shell F.E. models used to provide reference results as well as the parameters 
considered in the study. Section 3 is devoted to recall the essentials and key features of 
established design approaches that will also be kept in the following to assess the performance 
of the design proposal, which is detailed in section 3.3. Eventually, section 4 analyses the 
various influences of key parameters on the resistance, such as strain hardening, section 
slenderness and shape or local plate buckling. § 4.4 finally presents comparison results with the 
proposed approach to existing design recommendations. 
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2 Numerical models – Parametric studies 

2.1 General 

All non-linear F.E. simulations reported in the present paper have been led by means of non-
linear F.E. software FINELg (1999), continuously developed at the University of Liège and 
Greisch Design Office since 1970. Use of quadrangular 4-nodes plate-shell finite elements with 
typical features (Corotational Total Lagrangian formulation, Kirchhoff’s theory for bending) 
has been made; mesh sensitivity analyses have been performed and adequate numbers of 
integration points in-plane and across the thickness have also been adopted. 

Both Linear Buckling Analyses (L.B.A., i.e. critical load calculations) and Geometrically and 
Materially Non-linear with Imperfections Analyses (G.M.N.I.A.) have been performed. L.B.A. 
calculations resorted to the so-called subspace iteration method coupled with Jacobi 
eigenvalues extraction technique and Sturm sequences; G.M.N.I.A. analyses were based on 
state-of-the-art numerical techniques and strategies: pure Newton-Raphson iterative scheme 
with out-of-balance residuals corrections, associated with the arc-length method and automatic 
loading strategies up to peak loads and beyond. 

As such stainless steel sections are assumed to be fabricated by welding, no particular treatment 
of the web-flange area was accounted for, contrary to the need to account for the presence of 
fillets for hot-rolled profiles (Gérard 2019). Accordingly, a little material overlap in these areas 
occurred, with little influence on the results presented here. 

Last, the length of each numerical specimen was set so as to (i) reproduce cross-sectional 
behaviour as much as possible (i.e. specimens were chosen long enough to shy away from edge 
effects but short enough to avoid member buckling) and to (ii) comply with recommended 
geometrical local imperfection patterns – see § 2.4. 

2.2 Material response 

Stainless steel being an iron-based alloy containing a minimum of 11% chromium, different 
chemical compositions are usually met in various material grades: austenitic, ferritic, duplex, 
martensitic, martensitic-austenitic, etc. In order to limit the number of F.E. calculations without 
disregarding too much of the available stainless steel grades, only grades 1.4003, 1.4301 and 
1.4362 were considered in the parametric studies, being deemed the most common and 
representative. 

Each material model was represented by a so-called two-stage model (Gardner 2002) that 
follows the well-known Ramberg-Osgood expression up to 0.2 but adopts a modified equation 
beyond 0.2 and up to the ultimate stress, as follows (Gardner 2004): 
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Fig. 2a further illustrates the material responses of the three grades considered in the numerical 
studies. In practice, the materials laws for the 3 stainless steel grades considered were 
implemented in the F.E. models through the use of 8 linear segment approximations per curve, 
as Fig. 2b shows. The slope of each segment was optimised through linear regression analysis, 
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and Fig. 2a and 2b show an excellent level of accordance. In particular, smaller segments were 
used in the most rounded parts of the curves. 

  
Figure 2: a) Original - relationship (two-stage R.-O.) – b) 8-segment approximations for F.E. simulations 

2.3 Loading and support conditions 

Regarding support conditions accounted for in the shell models, two main aspects have been 
distinguished for the definition of the reference “fork conditions” at the member’s ends. The 
first one concerns the treatment of in-plane cross-sectional local supports: these have been 
defined as Fig. 3 shows, and consequently provide (i) local lateral support to possible local 
buckling owing to concentrated support reactions, as well as (ii) global cross-section fork 
condition supports, namely fixing lateral and vertical deflections, as well as torsional twist. 

The second aspect deals with the possible axial displacements (“x-oriented”) of the end cross-
section nodes. In order to allow for a maximum number of four global degrees-of-freedom of 
the end cross-section (i.e. axial displacement, rotations y, z and warping, so as to keep the 
shell modelling similar to typical beam-like assumption such as Bernoulli’s in bending), use of 
linear kinematic constraints has been made between the flange and web nodes. While a 
maximum of four nodes may experience a “free” longitudinal displacement, all other nodes’ x-
displacements linearly depend on the longitudinal displacements of the “x-free” nodes to 
respect a global cross-sectional displaced configuration – see also (Gérard 2019) for more 
details. 

 
Figure 3: Modelling of end sections: transverse supports and linear constraints (longitudinal) 

For symmetry reasons, the four nodes at the flanges tips have been chosen as the “x-free” ones, 
and all other nodes are consequently the “x-constrained” ones. Doing so allows for a sufficiently 
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correct treatment of the global cross-section behaviour, given the usual levels of displacements 
and rotations reached within present study. It also avoids the usual technique of superposing 
additional stiff elements along the flanges and webs of the end-sections that aim at preventing 
local instabilities but may generate numerical troubles. This modelling technique has been 
shown to be very effective from a numerical point of view and was validated and adopted in 
many F.E. studies (Greiner et al., 2009). 

2.4 Imperfections 

Associated to the fabrication process considered here, a typical welded residual stresses pattern 
was introduced in the models, in all G.M.N.I.A. calculations (see Fig. 4a). Amplitudes and 
distribution shapes follow carbon steel recommendations (ECCS 1976), as observed by 
Bredenkamp et al. (1992); albeit relatively usual, this pattern bears the particularity that self-
equilibrium is ensured on a plate-per-plate basis, through adequate values of 1 and 2 that 
depend of the section’s dimensions. 

    
Figure 4: a) Residual stresses pattern considered (welded) – b) Definition of geometrical local imperfections 

As for geometrical imperfections, a specific sub-study was carried out to help make a decision 
on which standard distributions shall be used along the main F.E. parametric studies. These 
preliminary investigations were indeed motivated by a general lack of knowledge in the field 
for stainless steel sections (Ashraf 2006) as well as by quite different ways of dealing with the 
definition of both shape and amplitude of the local geometrical imperfections. 

Indeed, for more classical carbon steel sections, various recommendations set the amplitude of 
the initial local imperfection to be made dependent on the plate dimensions – see for example 
(EN1993-1-5 2005, Pavlovcic 2005, Beg et al. 2010 or Johansson et al. 2007) –, while others 
relate it to the plate thickness t – more precisely to a function of t, see (Gardner 2010, Dawson 
1972, Schafer 1998) for example. While both dependencies make sense and can be justified 
from a mechanical point of view, relative little correlation with t could be observed for stainless 
steel sections (Gardner 2004). Besides, the selection of an appropriate shape for the initial 
geometrical imperfection may also either be based on the 1st eigenmode (or a combination of 
several modes) or on sine distributions (see Nseir 2015, Gérard 2019b). 

Accordingly, the following dedicated preliminary study was carried out, comprising the 
following parameters: 

 12 different section sizes (6 “beam shapes” IPE sections + 6 “column shapes” HEA 
sections), including invented sections obtained from regular ones with a 30% reduction 
of all thicknesses – sections denoted with ‘ and “ in the following. These sections were 
intended to get results for cases where local buckling and the associated initial 
imperfections is more influential while keeping other dimensions constant, in particular 
the h / b ratios; 
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 2 load cases, either simple compression N or major-axis bending My; 
 4 different amplitudes of geometrical local imperfections, all based on sinusoidal 

patterns along both dimensions of the plates by adequate modification of node 
coordinates: first, two amplitudes as functions of thickness t were considered (as 
recommended by Ashraf 2006): 0.1 t and 0.5 t. The second set of amplitudes consisted 
in functions of plates’ leading dimension a, with either a / 100 or a / 200. 

  
Figure 5: Results of imperfection study – a) Catalogue shapes – b) Invented (more slender) sections 

  
Figure 6: Influence of local imperfection amplitude (sections in compression) – a) Beam shapes – b) Column 

shapes 

  
Figure 7: Influence of local imperfection amplitude (sections under major-axis bending) – a) Beam shapes – b) 

Column shapes 

Overall, 96 F.E. simulations were performed. Results are presented in Figs. 5 to 7, for all 
sections considered – including invented, more slender ones, and for N and M load cases. All 
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results refer to L which is defined as the ratio between the numerically-obtained peak load and 
the corresponding plastic capacity, i.e. L stands as the “local buckling factor”. L values below 
unity therefore indicate a detrimental influence of local buckling, while L > 1.0 denote benefits 
from material strain hardening. 

The obtained results show that the various possibilities considered with respect to the amplitude 
yield similar and consistent results for all section shapes – including for the invented ones –, 
for both N and M load cases, at the exception of cases with 0.5 t amplitudes which are always 
the most detrimental, by far. These tendencies were expected, as amplitudes as high as 0.5 t 
may be quite exaggerated compared to measured data (Greiner et al. 2009). Also, it appears 
clearly from Fig. 5b that the more slender invented sections for which the value of the amplitude 
is decisive also provide coherent results for all amplitudes tested but 0.5 t. Therefore, this 
possible amplitude choice shall be disregarded, and was not kept any further. 

Additionally, as will be detailed in the next § 2.5, the present study intends at embracing quite 
slender cross-sections, so that a dependency on a rather than on t was preferred. Again, since 
measured initial geometrical imperfections data and even some design codes (EN1993-1-5 
2005) encourage preferring a / 200, the latter recommendation was followed within the main 
parametric studies described in the next paragraph. 

2.5 Parametric studies 

As based on the previously-detailed F.E. models, an extensive numerical parametric study was 
carried out, encompassing the following main parameters: 

 Material laws: the 3 different grades detailed previously were accounted for (grades 
1.4301, 1.4003 and 1.4362 with respective equivalent 0.2% proof-stresses of 
210 N/mm2, 250 N/mm2 and 400 N/mm2; 

 Section dimensions (welded open sections): a total of 50 different sections was 
considered: 

o 10 beam-type girders (i.e. with height-to-width ratios h / b ≈ 2), from the 
European Section catalogue IPE family: IPE80, IPE140, IPE160, IPE240, 
IPE270, IPE300, IPE330, IPE450, IPE550 and IPE600; 

o 10 column-type sections (h / b ≈ 1): HEA140, HEA240, HEA280, HEA400, 
HEA500, HEA650, HEA700, HEA800, HEA900 and HEA1000; 

o 10 heavy sections geometries (large thicknesses so as to observe the biggest 
possible influence of material strain hardening): HEM140, HEM240, HEM280, 
HEM400, HEM500, HEM650, HEM700, HEM800, HEM900 and HEM1000; 

o 10 more slender IPE shapes obtained from the regular series but accounting for 
a 30% reduction in thickness of both web and flanges (designated as IPES in the 
following, S referring to more Slender geometries); 

o 10 more slender HEA shapes with similarly reduced thicknesses (denoted as 
HEAS) 

 Two simple load cases, either sections in compression (N) or under major-axis bending 
(M); 

 Both L.B.A. and G.M.N.I.A. computations were contemplated, in order to get (i) the 
(local) critical load multiplier Rcr,L (cf. Figs 1 and 8) as well as the (ii) ultimate load 
multiplier (carrying capacity). 

Some 75 simulation results were also added through more slender section geometries lying in 
between usual beam an column shapes, i.e. slender sections with ratios h / b intermediate 
between 1.0 and 2.0 – see § 4.2 for more analysis details. Each G.M.N.I.A. computation 
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accounted for the imperfection patterns detailed previously, and a total of about 750 non-linear 
results was collected, and are further analyzed and detailed in Section 4. 

3 Analytical resistance predictions 

3.1 Current design provisions in major standards 

All F.E. results gathered were compared to existing design provisions for stainless steel 
sections, following the recommendations of the European (EN1993-1-4 2006) and American 
(AISC 2010) codes, as well as to C.S.M.-based resistance predictions. 

Eurocode 3 Part 1.4 design rules for stainless steel remain in large amounts inspired by carbon 
steel ones: first, like many modern design codes, it relies on the concept of classes to 
characterize section resistance as a function of the sensitivity to local buckling. Although not 
appropriate for sections made of materials with no yield plateau (Boissonnade 2017, Chen 
2013), classification still is a preliminary step to the determination of the resistance of stainless 
steel sections, and leads to either plastic, elastic or effective resistance of the section. 

The plastic resistance of stainless steel sections in Eurocode 3 – denoted EC3 in the 
following – keeps being based on assumed constant stress blocks associated to the proof stress 
0.2, and does not account for any further strain hardening effects. Accordingly, EC3 predictions 
are expected to be safe-sided for the most compact section shapes, e.g. for HEM sections. As 
per slender sections, EC3 makes use of the Effective Width Method (E.W.M.), based on Von 
Karman’s approach that consists in neglecting the contribution to resistance of fibres in areas 
supposedly most affected by local buckling. 

Partly similar to the EC3 approach, the U.S. design requirements (denoted AISC hereafter) for 
stainless steel are also based on the concept of classes, and requires the E.W.M. for compression 
cases but relies on “simplified” procedures in bending where the tedious calculations associated 
to the E.W.M. are avoided. Instead, sets of approximate equations depending on the pair classes 
of flanges and web are provided. Here again, strain hardening effects are not specifically 
addressed. 

3.2 Continuous Strength Method 

In contrast, the Continuous Strength Method (C.S.M., Gardner 2008) proposes a radically 
different, strain-based design approach. The basic principles and application steps of the C.S.M. 
consist in (i) relying on an experimentally-calibrated base curve relating the plate slenderness 
of the leading cross-section plate to the strain ratio peak / yield, then (ii) distribute stresses and 
strains across the section from peak and (iii) integrate the material model through the section 
assuming linear strain distributions (Bernoulli assumption) so as to provide a C.S.M. resistance 
prediction. 

Accordingly, the classification step is no longer necessary and the C.S.M. nicely provides 
continuous strength predictions from plastic to slender capacities. Also, use of an 
experimentally-based peak / yield ratio allows to better account for the influence of the material 
behaviour on the section’s overall response, i.e. potential strain-hardening benefits are duly 
considered. 

Resistance predictions from both the C.S.M., EC3, AISC and the proposed O.I.C.-based 
approach described in the next paragraph are compared to the F.E. reference results in § 4.4. 

3.3 O.I.C. approach – Design proposal 

As summarized previously, the O.I.C. approach provides direct resistance predictions from so-
called - “buckling” curves. In the particular case of cross-section resistance, reference shall 
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be made to local buckling, and factors Rcr,L, L and L are of concern – see Fig. 8. In the same 
way as the C.S.M., continuous resistance predictions are ensured through a continuous buckling 
curve, and section classification is no more necessary. Although reference shall classically be 
made to the 0.2% proof stress 0.2, the rounded material response, including strain hardening 
effects, can efficiently be accounted for through adequate definitions of the buckling curves, 
possibly allowing for L ≥ 1.0 values, i.e. section capacity may exceed plastic resistance. As 
another key feature, the case of slender sections is also easily and straightforwardly accounted 
for without resorting to the E.W.M., and direct resistance predictions are provided. 

 
Figure 8: O.I.C. design chart for cross-sectional local resistance 

Table 1: design equations for O.I.C.-based approach 
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Accurate definitions of – local – buckling curves is therefore essential. In the present context, 
two sets of definitions, depending on local cross-section slenderness L, have been proposed: 

 For quite compact sections characterized by L ≤ 0 where 0 is a reference cross-
sectional slenderness (cf. Table 1), L ≥ 1.0 values are proposed through equations that 
have been calibrated on the basis of a strain-based approach similar to the C.S.M. (see 
details on Figs. 10a to 10d). For an improved accuracy, the proposed expressions have 
been made dependent on the stainless steel grade and on the load case; 

 For sections with L ≥ 0, the influence of local buckling becomes more detrimental and 
a classical, Ayrton-Perry buckling curve format is proposed (see Table 1), which is 
characterised by (i) the use of factor  that accounts for post-buckling resistance reserves 
(Nseir 2015) and by (ii) a dependency on parameter  which takes the balance of the 
susceptibility to buckling of the respective plate constituent elements. 

The merits of the proposed design approach as well as the influence of many factors such as 
the steel grade, cross-section shape or plate buckling are detailed in the next Section; accuracy 
and performance of the proposal is also compared to existing approaches Finally, it shall also 
be noted that in the present study, all R-factors associated to the O.I.C. approach have been 
calculated by means of accurate tools (purposely-developed software), for an improved 
precision – such tools are currently being finalised and shall be made available soon; 
alternatively, as specified in Fig. 8, approximate formulae may be used, e.g. cross-section 
plastic interaction equations for Rpl or critical stresses for Rcr,L, see (Boissonnade 2017). 

4 Analysis of results – Accuracy of proposal 

4.1 Influence of strain-hardening 

As of prime importance, the ability of the design proposal to take advantage of stainless steel 
material response and strain hardening effects is firstly investigated here. Figs 9a and 9b plots 
the obtained results in typical relative resistance-slenderness L-L axes, where, in addition, so-
called “Resistance” L = 1.0 and “Stability” curves are reported: the “Resistance” limit is to be 
associated with Rpl and characterizes the attainment of the full plastic capacity (i.e. no influence 
of buckling) while the “Stability” limit represents the 1st order linear buckling maximum 
capacity characterized by Rcr (i.e. no yielding, allowable stress is infinite). 

  
Figure 9: Influence of steel grade on resistance a) Sections in compression – b) Sections under major-axis 

bending My 

As the figures show, the general distribution of results is quite scattered, especially for 
compression load cases and for high values of the section slenderness (L > 1.0) where 
significant changes in resistance are noted for a given L. As expected, important benefits from 
strain hardening are also observed, obviously in regions of low slenderness; results show up to 
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40% higher carrying capacity than the plastic resistance in some cases. Also, regardless of the 
steel grade, an important amount of results lies above the L = 1.0 limit (L < 0.45 cases for 
compression and L < 0.5 sections under major-axis bending). This further confirms that 
stainless steel sections may be utilized beyond their plastic capacity as based on 0.2 and that 
the associated increase in resistance provides non negligible benefits, given the relative 
expensive costs of stainless steel. 

For the latter L ≤ 0 cases, the O.I.C. equations proposed in Table 1 have been calibrated with 
these numerical results, as Figs. 10a to 10d show. A two-step procedure was followed, where 
peak / y is firstly made a function of L, and then L a function of peak / y. As can be seen, a 
difference was made between steel grades for compression cases (Fig. 10a), but not for bending 
cases (Fig. 10c). 

  

  
Figure 10: strain-based approach in O.I.C. method for low slenderness (resistance higher than plastic) 

a) and b): Design approach for compression – c) and d): Design approach for major-axis bending 

The more scattered results of Fig 9 in regions of moderate to (very) slender sections arise from 
other influences, as the next paragraphs show. 

4.2 Influence of section slenderness and shape 

Figs. 11a and 11b propose a plotting of the same results, where however a distinction is made 
between sections’ shapes. Especially for the compression load case, this is seen to be a key 
parameter explaining the disparity of the results: in general, IPE sections (beams) provide 
higher resistances than their HEA (columns) counterparts, for an identical L. Albeit IPES and 
HEAS invented sections nicely complement the observed trends and allow to deal with more 
slender sections, a non-negligible resistance gap between these families of section shapes is 
clearly visible, both for compression and bending cases. In this respect, additional sections have 
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again been invented so as to provide intermediate data – namely through varying the height-to-
width ratio h / b. Besides, nearly all section shapes are seen to be positively affected by strain 
hardening reserves, HEM sections obviously being the ones taking the most advantage of these. 

  
Figure 11: Influence of section shape on resistance a) Sections in compression – b) Sections under major-axis 

bending My 

Consequently, it appears justified that O.I.C. design equations relating L to L shall be made 
dependent on the section’s aspect ratio or on any other parameter somehow related. Fig. 12a 
shows how the simple aspect ratio parameter h / b allows for this, although a bit roughly. 

For the particular case of carbon steel sections, Gérard (2019c) suggested resorting to parameter 
(b . tf

2) / (h . tw
2) which, beyond the h / b ratio, further accounts for the influence of web and 

flanges relative thicknesses. Fig. 12b illustrates how relying on this parameter may efficiently 
help providing transitional resistances between beam and column shapes. However, in the 
present study, another parameter  was preferred, as mentioned in § 3.3 and further analyzed in 
the next paragraph. 

  
Figure 12: Adequacy of various parameters to provide transitional resistances from beam to column shapes 

(compression cases considered) – a) Parameter h / b – b) (b . tf
2) / (h . tw

2) 

4.3 Effect of individual plate buckling on section response 

Figs. 13a and 13b further allow to understand how the sensitivity to local buckling of individual 
plates (i.e. web and flanges) rule the resistance shift from beam to column shapes. Indeed, these 
figures display a very good ability of parameter  to sort the results (see definition of  in 
Table 1);  being defined as the ratio of respective web and flange critical stresses, the beam-
shape or column-shape response of sections at moderate to high slenderness is found governed 
by individual plate buckling, i.e. a single plate element may govern the entire section’s response 
in cases of typical IPE or HEA dimensions: a low value of  indicates that local buckling in the 
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web rules the section’s response (e.g. IPE sections in compression) while a high  relate to 
flange-driven cases (e.g. HEA in compression or bending). 

The figures also allow to preliminarily assess the performance of the proposed design approach 
for cases where local buckling becomes detrimental – situations where L < 1.0. Results sorted 
by ranges of  (e.g.  = [0-0.01[) can be compared to their corresponding interval’s lower bound 
curve, to observe a general very good accordance. 

  
Figure 13: Correlation between resistance and section shape through proposed parameter  

More advanced attempts towards relying on more accurate (and complex) expressions for cr,w 
and cr,f allowing for plate interactions were also experienced through the use of software 
EBPlate (2017) and web-flange interaction diagrams (Trahair et al. 2007). The intention was to 
investigate whether the assumption of isolated plates within the section – leading to constant k 
factors – should beneficially be substituted by a more realistic one acknowledging for plate 
element interaction at the cross-section level. Results indicated that little benefits in accuracy 
were brought by such more complex approaches, therefore the simpler design approach 
suggested in § 3.3 where  is defined with classical plate theory k factor values was kept. 

Figs. 14a and 14b further focus on the performance of the proposed O.I.C. equations for L ≤ 0 
cases, for both compression and major-axis bending cases, respectively. As can be observed, 
the proposed approach leads to safe and accurate resistance predictions, for all stainless steel 
grades considered and for both sections in compression and for sections under major-axis 
bending moment. 
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Figure 14: Performance of O.I.C. proposal for low to intermediate cross-section slenderness – a) Sections in 

compression – b) Sections under major-axis bending moment 

4.4 Comparison with existing design approaches and proposal 

This last section is devoted to assessing and comparing the performances of the various design 
approaches described herein with respect to the database of reference F.E. results. Figs. 15a and 
15b first analyse the ability of EC3 design rules to provide accurate and safe resistance 
estimates, through plotting the evolution of the L,F.E. / L,EC3 ratio as a function of L; values of 
this ratio above unity indicate safe EC3 resistance predictions, while values lower than 1.0 refer 
to unsafe ones. 

As a matter of fact, EC3 provisions are seen poorly appropriate, leading to quite overly-
conservative estimates (especially for bending) as well as to quite unsafe ones lying beyond 
what could possibly be compensated by usual values of safety factor M. In particular, EC3 rules 
are seen unsuitable at low slenderness where strain hardening is more significant, as was 
expected. For sections under major-axis bending moment, the results remain very scattered and 
unduly over-conservative, in large extents owing to the inappropriate discrete behavioral 
classes concept. The very conservative results at L ≈ 0.6 can indeed be shown to arise from 
EC3’s sudden drop of resistance between Mpl and Mel that obviously bear no physical meaning 
and is not visible in the numerical results. 

 
Figure 15: EC3 predictions vs. F.E. reference results – a) Sections in compression – b) Sections under major-axis 

bending 

Fig. 16a and 16b propose a statistical summary of these results, where cumulative frequencies 
are reported as a function of ranges of the L,F.E. / L,EC3 ratio. For sections in compression, 
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Fig. 16a further evidences a non-negligible amount of results lower than 0.9 for which a 
M = 1.1 value may not be sufficient to regain safety. As for Fig. 16b, it mostly emphasizes the 
scattered results and the high amount of very conservative results with L,F.E. / L,EC3 ratios 
larger than 1.2. 

  
Figure 16: Statistical distribution of L,F.E. / L,EC3 ratios – a) Sections in compression – b) Sections under major-

axis bending 

  
Figure 17: AISC predictions vs. F.E. reference results – a) Sections in compression – b) Sections under major-

axis bending 

  
Figure 18: Statistical distribution of L,F.E. / L,AISC ratios – a) Sections in compression – b) Sections under major-

axis bending 

Similarly, the AISC design provisions exhibit rather poor performances, in nearly the same 
extents – inability to account for strain hardening at low section slenderness, important unsafe 
predictions for sections in compression and scattered, over-conservative resistance estimates 
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for sections under major-axis bending, see Figs. 17a and 17b. Fig. 18a and 18b statistical plots 
however denote slightly more consistent results in compression but inversely more dispersed 
tendencies for bending. 

  
Figure 19: CSM predictions vs. F.E. reference results – a) Sections in compression – b) Sections under major-

axis bending 

In contrast, the C.S.M. predictions, as reported in Figs 19a and 19b, provide much more 
accurate and consistent resistance predictions. However, the C.S.M. base curve and the 
associated predictions remaining limited to L values of max. 0.68, only a limited number 
results can be reported. 

Figs. 20a and 20b finally plot the results of the comparison between the proposed O.I.C. 
predictions and the F.E. results. For compression load cases, the proposed approach is seen 
safe, accurate and consistent, along the whole slenderness range, for all section 
shapes – including the invented, more slender ones – and whatever the steel grade. In particular, 
the effects of strain hardening at low slenderness and post-buckling reserves for high 
slenderness are seen to be accurately accounted for. Similar conclusions can be drawn for 
sections under major-axis bending, at the exception of several data points with high  values 
for which the design proposal provides overly safe estimates – this last point is presently under 
scrutiny. 

  
Figure 20: O.I.C. proposal predictions vs. F.E. reference results – a) Sections in compression – b) Sections under 

major-axis bending 

Figs. 21a and 21b statistical plots further confirm the excellent performances of the proposed 
O.I.C. design approach, since the vast majority of resistance predictions are seen consistent and 
grouped, lying within 20% of the reference F.E. ones, and always on the safe side. 
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Figure 21: Statistical distribution of L,F.E. / L,O.I.C. ratios – a) Sections in compression – b) Sections under major-

axis bending 

5 Conclusions 

This paper showed how a new direct design approach, following the O.I.C. principles and 
design steps, can efficiently characterize the resistance of stainless steel sections in compression 
or under major-axis bending. Confronted to some 750 carefully-conducted shell F.E. 
simulations, the proposed design equations showed safe, accurate and consistent. In particular, 
they were evidenced to adequately account for the specific rounded material response and allow 
for higher resistance levels stemming from pronounced strain hardening effects when relevant. 
Also, the various influences of section slenderness, of section shape and dimensions or of steel 
grade were analysed in more details, and the proposed design approach revealed fully 
appropriate with respect to each parameter. Comparisons with European and American stainless 
steel specifications also displayed the improved performance of the proposal, both regarding 
accuracy, consistency and safety aspects. 
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